精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OAx轴上,点A1在第一象限,且OA1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是_____

【答案】(﹣2100921009

【解析】

利用等腰直角三角形的性质可得出部分点An的坐标,根据点的坐标的变化可得出变化规律“点A8n+3的坐标为(﹣24n+124n+1)(n为自然数)”,结合2019252×8+3即可得出点A2019的坐标.

解:由等腰直角三角形的性质,可知:A111),A202),A3(﹣22),A40,﹣4),A5(﹣4,﹣4),A60,﹣8),A78,﹣8),A8160),A91616),A10032),A11(﹣3232),…,

∴点A8n+3的坐标为(﹣24n+124n+1)(n为自然数).

2019252×8+3,∴点A2019的坐标为(﹣24×252+124×252+1),即(﹣2100921009),

故答案为(﹣2100921009).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】大丰区在创建全国文明城市过程中,决定购买AB两种树苗对某路段道路进行绿化改造,已知购买A种树苗5棵,B种树苗10棵,需要1300元;购买A种树苗3棵,B种树苗5棵,需要710元.

(1)求购买AB两种树苗每棵各需要多少元?

(2)现需购进这两种树苗共100棵,其中A种树苗购进x棵,考虑到绿化效果和资金周转,A种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过8650元,试求x 的取值范围。

(3)某包工队承包了该项种植任务,若种好一棵A种树苗需付工钱15元,种好一棵B种树苗需付工钱25元,在(2)的条件下,设种好这100棵树苗共需付工钱y元,,试求出yx的函数表达式,并写出所付的种植工钱最少的购买方案及最少工钱是多少元。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+c的对称轴为x=2,且过点C(0,3)

(1)求此抛物线的解析式;

(2)证明:该抛物线恒在直线y=﹣2x+1上方.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,CBCD,∠D+ABC180°,CEADE

1)求证:AC平分∠DAB

2)若AE3ED6,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)Q(1,m),直线PQx轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.

(1)求∠OCD的度数;

(2)当m=3,1<x<3时,存在点M使得OPM∽△OCP,求此时点M的坐标;

(3)当m=5时,矩形OAMBOPQ的重叠部分的面积能否等于4.1?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,在四边形ABCD中,ABCD,点EBC的中点,若AE是∠BAD的平分线,试判断ABADDC之间的等量关系.

解决此问题可以用如下方法:延长AEDC的延长线于点F,易证△AEB≌△FEC得到AB=FC,从而把ABADDC转化在一个三角形中即可判断.ABADDC之间的等量关系______.

(2)同题探究.

①如图②,AD是△ABC的中线,AB=6AC=4,求AD的范围:

②如图③,在四边形ABCD中,ABCDAFDC的延长线交于点F,点EBC的中点,若AE是∠BAF的平分线,试探究ABAFCF之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片放入以所在直线为轴,边上一点为坐标原点的平面直角坐标系中,连结。将纸片沿折叠,点恰好落在边上点处,若,则点的坐标为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象经过点A(﹣3,6),并与x轴交于点B(﹣1,0)和点C,与y轴交于点E,顶点为P,对称轴与x轴交于点D

Ⅰ)求这个二次函数的解析式;

Ⅱ)连接CP,DCP是什么特殊形状的三角形?并加以说明;

Ⅲ)点Q是第一象限的抛物线上一点,且满足∠QEO=BEO,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交与点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.

(1)求证:∠BCP=BAN.

(2)若AC=4,PC=3,求MNBC的值.

查看答案和解析>>

同步练习册答案