精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=x2+bx+c的对称轴为x=2,且过点C(0,3)

(1)求此抛物线的解析式;

(2)证明:该抛物线恒在直线y=﹣2x+1上方.

【答案】(1)y=x2﹣4x+3;(2)证明见解析.

【解析】

(1)根据对称轴即可求出b的值,根据过点C(0,3),即可求出c的值.

(2)设y1=x2﹣4x+3,y2=﹣2x+1,作差,配方,即可证明.

(1)∵抛物线y=x2+bx+c的对称轴为x=2,

,得,b=﹣4,

∵抛物线y=x2+bx+c过点C(0,3),

c=3,

∴此抛物线的解析式为:y=x2﹣4x+3;

(2)证明:设y1=x2﹣4x+3,y2=﹣2x+1,

y1﹣y2=(x2﹣4x+3)﹣(﹣2x+1)=x2﹣2x+2=(x﹣1)2+1>0,

y1>y2

∴该抛物线恒在直线y=﹣2x+1上方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人同时从A地前往相距5千米的B.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程(千米)关于时间(分钟)的函数图像如图所示;乙慢跑所行的路程(千米)关于时间(分钟)的函数解析式为.

1)在图中画出乙慢跑所行的路程关于时间的函数图像;

2)乙慢跑的速度是每分钟________千米;

3)甲修车后行驶的速度是每分钟________千米;

4)甲、乙两人在出发后,中途________分钟时相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大丰区在创建全国文明城市过程中,决定购买AB两种树苗对某路段道路进行绿化改造,已知购买A种树苗5棵,B种树苗10棵,需要1300元;购买A种树苗3棵,B种树苗5棵,需要710元.

(1)求购买AB两种树苗每棵各需要多少元?

(2)现需购进这两种树苗共100棵,其中A种树苗购进x棵,考虑到绿化效果和资金周转,A种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过8650元,试求x 的取值范围。

(3)某包工队承包了该项种植任务,若种好一棵A种树苗需付工钱15元,种好一棵B种树苗需付工钱25元,在(2)的条件下,设种好这100棵树苗共需付工钱y元,,试求出yx的函数表达式,并写出所付的种植工钱最少的购买方案及最少工钱是多少元。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB90°,AC8cmBC6cm.点PA点出发沿ACB路径以每秒1cm的运动速度向终点B运动;同时点QB点出发沿BCA路径以每秒vcm的速度向终点A运动.分别过PQPEABEQFABF

1)设运动时间为t秒,当t   时,直线BP平分△ABC的面积.

2)当QBC边上运动时(t0),且v1时,连接AQ、连接BP,线段AQBP可能相等吗?若能,求出t的值;若不能,请说明理由.

3)当Q的速度v为多少时,存在某一时刻(或时间段)可以使得△PAE与△QBF全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,OA1B1是边长为2的等边三角形,作B2A2B1OA1B1关于点B1成中心对称,再作B2A3B3B2A2B1关于点B2成中心对称,如此作下去,则B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABD内接于圆OBAD=60°,AC为圆O的直径.ACBDP点且PB=2,PD=4,AD的长为( )

A. 2 B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+c的对称轴为x=2,且过点C(0,3)

(1)求此抛物线的解析式;

(2)证明:该抛物线恒在直线y=﹣2x+1上方.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,CBCD,∠D+ABC180°,CEADE

1)求证:AC平分∠DAB

2)若AE3ED6,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象经过点A(﹣3,6),并与x轴交于点B(﹣1,0)和点C,与y轴交于点E,顶点为P,对称轴与x轴交于点D

Ⅰ)求这个二次函数的解析式;

Ⅱ)连接CP,DCP是什么特殊形状的三角形?并加以说明;

Ⅲ)点Q是第一象限的抛物线上一点,且满足∠QEO=BEO,求出点Q的坐标.

查看答案和解析>>

同步练习册答案