精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABD内接于圆OBAD=60°,AC为圆O的直径.ACBDP点且PB=2,PD=4,AD的长为( )

A. 2 B. 2 C. 2 D. 4

【答案】B

【解析】

连接DO并延长交⊙OE,连接BE,DE是⊙O的直径,可得∠EBD=90°,由圆周角定理可得∠BED=BAD=60°,继而得∠BDE=30°,可求得BD、DE长,进而可得OA=OD=2,根据相似三角形的判定可得OPDBED,从而可得∠POD=EBD=90°,再根据勾股定理即可求得结论.

连接DO并延长交⊙OE,连接BE,

DE是⊙O的直径,

∴∠EBD=90°,

∵∠BED=BAD=60°,

∴∠EDB=30°,

DE=2BE,

PB=2,PD=6,

BD=6,

BD2+BE2=DE2

DE=4,BE=2

OA=OD==2

又∵∠ODP=BDE,

∴△ODPBDE,

∴∠POD=EBD=90°,

AD=

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点F,C是⊙O上两点,且连接AC,AF,过点CCDAFAF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;

(2)CD=2求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AC4BC3AB5AD为△ABC的角平分线,则CD的长度为(  )

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点C在线段AB上,(点C不与AB重合),分别以ACBC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AEBD交于点P

1)观察猜想:①线段AEBD的数量关系为_________;②APC的度数为_______________

2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明

3)拓展应用:如图3,分别以ACBC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中ACD=∠BCE=90°CA=CDCB=CE,连接AE=BD交于点P,则线段AEBD的关系为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+c的对称轴为x=2,且过点C(0,3)

(1)求此抛物线的解析式;

(2)证明:该抛物线恒在直线y=﹣2x+1上方.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,∠B=30°CDCM分别是斜边上的高和中线,那么下列结论中错误的是(

A.CM=ACB.ACM=DCBC.AD=DMD.DB=4AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠ABC=30°,D在射线BC,且到A点的距离等于线段a的长.

(1)用圆规和直尺在图中作出点D:(不写作法,但须保留作图痕迹,且说明结果

(2)如果AB=8,a=5.△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知BC是⊙O的直径,点DBC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求证:直线AD是⊙O的切线;

(2)若AEBC,垂足为M,O的半径为4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题10分在长方形ABCD中,AB=5cmBC=6cm,点P从点A开始沿边AB向终点B1cm/s的速度移动,与此同时,点Q从点C开始沿边CB向终点B以2cm/s的速度移动,如果PQ分别从A、C同时出发,当点Q运动到点B时,两点停止运动.设运动时间为t秒.

1填空:BQ=______________cmPB=_______________cm用含t的代数式表示

2t为何值时,PQ的长度等于cm

3是否存在t的值,使得五边形APQCD的面积等于27?若存在,请求出此时t的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案