精英家教网 > 初中数学 > 题目详情

【题目】如图,上、下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两个全等的矩形,如果用彩色胶带按如图所示的方式包扎礼盒,那么所需胶带长度至少为多少厘米?(结果精确到1 cm)

【答案】432cm

【解析】分析:由主视图知道,高是20 cm,两顶点之间的最大距离为60 cm,应利用正六边形的性质求得底面对边之间的距离,然后所有棱长相加即可.

本题解析:

根据题意,作出实际图形的上底面,如解图.ACCD是上底面的两边,过点CCBAD于点B.易得∠ACD=120°,ACCDCBAD∴∠CDB=30°,CBCD.

∵最长对角线长60 cm,2CBCD=60 cm,CB=15 cm,CD=30 cm,BD=15AD=30 cm.∴胶带的长至少为30×6+20×6≈432(cm)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是(  )

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.

1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入管理费)

2)当每辆车的日租金为多少元时,每天的净收入最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB⊙O的直径,点CD⊙O上,且BC=6cmAC=8cm∠ABD=45°

1)求BD的长;

2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数y=-+|x|的图象与性质.
小军根据学习函数的经验,对函数y=-+|x|的图象与性质进行了探究.
下面是小军的探究过程,请补充完整:
1)函数y=-+|x|的自变量x的取值范围是
2)表是yx的几组对应值.

x

-2

-1.9

-1.5

-1

-0.5

0

1

2

3

4

y

2

1.60

0.80

0

-0.72

-1.41

-0.37

0

0.76

1.55

在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;


3)观察图象,函数的最小值是
4)进一步探究,结合函数的图象,写出该函数的一条性质(函数最小值除外):

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图三角形DEF是三角形ABC经过某种变换得到的图形A与点D,B与点E,C与点F分别是对应点观察点与点的坐标之间的关系解答下列问题:

(1)分别写出点A与点D,B与点E,C与点F的坐标并说说对应点的坐标有哪些特征;

(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A03)、B34)、C22)(正方形网格中每个小正方形的边长是一个单位长度).

1ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是

2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为21,点C2的坐标是 ;(画出图形)

3A2B2C2的面积是 平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,ABAC,∠BAC=90°,直角∠EPF的顶点PBC中点,两边PEPF分别交ABAC于点EF,给出以下五个结论:①AECF;②∠APE=∠CPF;③△EPF是等腰三角形;④EFAP;⑤S四边形AEPFSAPC.当∠EPF在△ABC内绕顶点P旋转时(E不与AB重合),其中正确的序号有________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边型ABCD中,ABDC,过对角线AC的中点O,分别交边AB,CD于点E,F,连接CE,AF.

1)求证:四边形AECF是菱形;

2)若EF=8AE=5,求四边形AECF的面积.

查看答案和解析>>

同步练习册答案