【题目】已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
证明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定义)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代换)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
【答案】 同位角相等,两直线平行;∠ACD;两直线平行,内错角相等;ACD;同位角相等,两直线平行;ADC;两直线平行,同位角相等;垂直定义;等量代换;垂直定义
【解析】
试题分析:灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.
试题解析:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定义)
∴DG∥AC(同位角相等,两直线平行)
∴∠2=∠ACD(两直线平行,内错角相等)
∵∠1=∠2(已知)
∴∠1=∠ACD(等量代换)
∴EF∥CD(同位角相等,两直线平行)
∴∠AEF=∠ADC(两直线平行,同位角相等)
∵EF⊥AB(已知)
∵∠AEF=90°(垂直定义)
∴∠ADC=90°(等量代换)
∴CD⊥AB(垂直定义).
科目:初中数学 来源: 题型:
【题目】小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是( )
A. 两人从起跑线同时出发,同时到达终点
B. 小苏跑全程的平均速度大于小林跑全程的平均速度
C. 小苏前15s跑过的路程大于小林前15s跑过的路程
D. 小林在跑最后100m的过程中,与小苏相遇2次
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】生活与应用:
在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.
(1)你能利用所学过的数轴知识描述它们的位置吗?
(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某化妆品销售公司每月收益y万元与销售量x万件的函数关系如图所示.(收益=销售利润﹣固定开支)
(1)写出图中点A与点B的实际意义;
(2)求y与x的函数表达式;
(3)已知目前公司每月略有亏损,为了让公司扭亏为盈,经理决定将每件产品的销售单价提高2元,请在图中画出提价后y与x函数关系的图象,并直接写出该函数的表达式.(要标出确定函数图象时所描的点的坐标)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.则下列结论: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论__________(填编号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习有理数的乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)对于以上两种解法,你认为谁的解法较好?
(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;
(3)用你认为最合适的方法计算:19×(﹣8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(-3)-(-15)÷(-3); (2)(-42)÷(-7)-(-6)×4;
(3)-14-×[2-(-3)2]; (4)-13-(1-0.5)2××(2-22);
(5)10+8×(-)2-2÷; (6)(-1)10-(-3)×|-|÷.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,AC=6,以点A为圆心,AB长为半径画弧DE,若∠1=∠2,则弧DE的长为( )
A.1π
B.1.5π
C.2π
D.3π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com