精英家教网 > 初中数学 > 题目详情

【题目】生活与应用:

在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.

(1)你能利用所学过的数轴知识描述它们的位置吗?

(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?

【答案】(1)见解析;(2)他能到医院

【解析】

(1)根据数轴的定义正确画出数轴,然后载数轴上找出各点即可;

(2)向西走了200米,记为:-200米;又向西走了﹣700米,记为:+700米,把两个数相加即可判断出能不能到医院.

(1)

(2)(﹣200)+700=500米,则他在医院的东500米,他能到医院

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象经过点(0,﹣3),顶点坐标为(﹣1,﹣4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列三行数:

-3,9,-27,81,-243,….

-5,7,-29,79,-245,….

-1,3,-9,27,-81,….

(1)第一行数是按什么规律排列的?

(2)第二行、第三行数与第一行数分别有什么关系?

(3)分别取这三行数中的第6个数,计算这三个数的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算正确的是( )

A. ×=2÷1=2 B. -24+22÷20=-24+4÷20=-20÷20=-1

C. -2×()=-2×(-)= D. -12÷(6×3)=-2×3=-6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12,DC=14,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与 CD1交于点O,则线段AD1的长为(

A.6
B.10
C.8
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACDBC上任意一点,过D分别向ABAC引垂线,垂足分别为EF点.

1)当点DBC的什么位置时,DE=DF?并证明.

2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?并请给予写出(不 必证明).

3)过C点作AB边上的高CG,请问DEDFCG的长之间存在怎样的等量关系?并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行驶里程如下:单位:千米

+15, -3, +14,-11,+10,-12,+4,-15,+16,-18

1他将最后一名乘客送到目的地时,距下午出车地点是多少千米?

2若汽车耗油量为千米,这天下午共耗油多少升

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.

证明:∵DG⊥BC,AC⊥BC(已知)

∴∠DGB=∠ACB=90°(垂直定义)

∴DG∥AC(

∴∠2=

∵∠1=∠2(已知)

∴∠1=∠ (等量代换)

∴EF∥CD(

∴∠AEF=∠

∵EF⊥AB(已知)

∴∠AEF=90°(

∴∠ADC=90°(

∴CD⊥AB(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线AB与函数yx>0)的图象交于点Am,2),B(2,n).过点AAC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使ODOC,且ACD的面积是6,连接BC

(1)求mkn的值;

(2)求ABC的面积.

查看答案和解析>>

同步练习册答案