精英家教网 > 初中数学 > 题目详情
3.胜利中学组织一批学生参加社会实践活动,活动中男生戴白色安全帽,女生戴红色安全帽,大家发现一个有趣的现象:每位男生看到的白色安全帽比红色多6顶,而每位女生看到的白色安全帽是红色的2倍.设男生有x人,女生有y人,那么可列方程组为$\left\{\begin{array}{l}{x-1=y+6}\\{x=2(y-1)}\end{array}\right.$.

分析 根据题意可以列出相应的二元一次方程组,本题得以解决.

解答 解:由题意可得,
$\left\{\begin{array}{l}{x-1=y+6}\\{x=2(y-1)}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x-1=y+6}\\{x=2(y-1)}\end{array}\right.$.

点评 本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.2.估计这些卡片中绘有孙悟空这个人物的卡片张数约为10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:$\frac{x-1}{3}$-$\frac{x+2}{6}$=$\frac{3x-1}{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD=70°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是150米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在Rt△ACB中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在边BA上以2cm/s的速度向点A匀速运动,同时动点N从点C出发,在边CB上以$\sqrt{3}$cm/s的速度向点B匀速运动,设运动时间为t s(0≤t≤5),连接MN.
(1)若BM=BN,求t值.
(2)若△MBN和△ABC相似,求t的值.
(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各式计算正确的是(  )
A.2m+3n=5mnB.(m32=m6C.m2•m3=m6D.(m-n)2=m2-n2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.二次函数y=2(x-1)2-5的最小值是-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.定义感知:我们把具有对称轴和开口方向都相同的抛物线称作“同向共轴抛物线”.例如抛物线y=-3(x-2)2+3与y=-$\frac{1}{3}$(x-2)2-1的对称轴都是直线x=2,且开口方向都向下,则这两条抛物线称作“同向共轴抛物线”.
初步运用:
(1)若抛物线y=3x2+mx-3与y=$\frac{1}{2}$x2-3x+5是“同向共轴抛物线”,则m=-18;
(2)若抛物线y=a1x2+b1x+c1与y=a2x2+b2x+c2是“同向共轴抛物线”,则下列结论正确的是②④⑤.(只须填上正确结论的顺序号即可)
①$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{c}_{1}}{{c}_{2}}$;②$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$;③$\frac{{b}_{2}}{{b}_{1}}$=$\frac{{c}_{2}}{{c}_{1}}$;④$\frac{{a}_{1}^{2}}{{a}_{2}^{2}}$=$\frac{{b}_{1}^{2}}{{b}_{2}^{2}}$;⑤$\frac{{a}_{1}-{a}_{2}}{{a}_{2}}$=$\frac{{b}_{1}-{b}_{2}}{{b}_{2}}$.
拓展延伸:若抛物线y=ax2-x+c与y=$\frac{1}{2}$(x-3)2+1是“同向共轴抛物线”,且两抛物线的顶点相距3个单位长度,试求该抛物线的解析式.

查看答案和解析>>

同步练习册答案