如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分
∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF?AC,cos∠ABD=
,AD=12.
⑴求证:△ANM≌△ENM;
⑵求证:FB是⊙O的切线;
⑶证明四边形AMEN是菱形,并求该菱形的面积S.
![]()
.⑴证明:∵BC是⊙O的直径
∴∠BAC=90o
又∵EM⊥BC,BM平分∠ABC,
∴AM=ME,∠AMN=EMN
又∵MN=MN,
∴△ANM≌△ENM
⑵∵AB2=AF?AC
∴![]()
又∵∠BAC=∠FAB=90o
∴△ABF∽△ACB
∴∠ABF=∠C
又∵∠FBC=∠ABC+∠FBA=90o
∴FB是⊙O的切线
⑶由⑴得AN=EN,AM=EM,∠AMN=EMN,
又∵AN∥ME,∴∠ANM=∠EMN,
∴∠AMN=∠ANM,∴AN=AM,
∴AM=ME=EN=AN
∴四边形AMEN是菱形
∵cos∠ABD=
,∠ADB=90o
∴![]()
设BD=3x,则AB=5x,,由勾股定理![]()
而AD=12,∴x=3
∴BD=9,AB=15
∵MB平分∠AME,∴BE=AB=15
∴DE=BE-BD=6
∵ND∥ME,∴∠BND=∠BME,又∵∠NBD=∠MBE
∴△BND∽△BME,则![]()
设ME=x,则ND=12-x,
,解得x=![]()
∴S=ME?DE=
×6=45
科目:初中数学 来源: 题型:
| 3 | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 7 |
| 18 |
| 7 |
| 18 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 4 |
| 3 |
| 4 |
| 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 3 |
| 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com