精英家教网 > 初中数学 > 题目详情
(2009•厦门)如图,已知梯形ABCD,AD∥BC,AF交CD于E,交BC的延长线于F.
(1)若∠B+∠DCF=180°,求证:四边形ABCD是等腰梯形;
(2)若E是线段CD的中点,且CF:CB=1:3,AD=6,求梯形ABCD中位线的长.

【答案】分析:(1)根据等角的补角相等即可证明梯形的两个底角相等,从而证明了该梯形是等腰梯形;
(2)发现全等三角形,根据全等三角形的性质证明AD=CF,从而得到上下底之间的关系,求得下底长,再根据梯形的中位线定理进行计算.
解答:(1)证明:∵∠DCB+∠DCF=180°,
又∵∠B+∠DCF=180°,
∴∠B=∠DCB.
∵四边形ABCD是梯形,
∴四边形ABCD是等腰梯形.

(2)解:∵AD∥BC,
∴∠DAE=∠F.
∵E是线段CD的中点,
∴DE=CE.
又∵∠DEA=∠FEC,
∴△ADE≌△FCE,
∴AD=CF,
∵CF:BC=1:3,
∴AD:BC=1:3.
∵AD=6,
∴BC=18.
∴梯形ABCD的中位线=(18+6)÷2=12.
点评:考查了等腰梯形的判定、全等三角形的判定和性质、梯形的中位线定理.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《三角形》(07)(解析版) 题型:填空题

(2009•厦门)如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D点到直线AB的距离是    cm.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《三角形》(04)(解析版) 题型:选择题

(2009•厦门)如图,AB,BC,CA是⊙O的三条弦,∠OBC=50°,则∠A=( )

A.25°
B.40°
C.80°
D.100°

查看答案和解析>>

科目:初中数学 来源:2010年浙江省湖州市九年级(下)数学模拟试卷(1)(解析版) 题型:解答题

(2009•厦门)如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=,∠A=30度.
(1)求劣弧的长;
(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:2009年福建省厦门市中考数学试卷(解析版) 题型:解答题

(2009•厦门)如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=,∠A=30度.
(1)求劣弧的长;
(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:2009年福建省厦门市中考数学试卷(解析版) 题型:解答题

(2009•厦门)如图,已知梯形ABCD,AD∥BC,AF交CD于E,交BC的延长线于F.
(1)若∠B+∠DCF=180°,求证:四边形ABCD是等腰梯形;
(2)若E是线段CD的中点,且CF:CB=1:3,AD=6,求梯形ABCD中位线的长.

查看答案和解析>>

同步练习册答案