精英家教网 > 初中数学 > 题目详情
如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,且线段OA、OC(OA>OC)是方程x2-18x+80=0的两根,将边BC折叠,使点B落在边OA上的点D处.
(1)求线段OA、OC的长;
(2)求直线CE与x轴交点P的坐标及折痕CE的长;
(3)是否存在过点D的直线l,使直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.
(1)方程x2-18x+80=0,
因式分解得:(x-8)(x-10)=0,
即x-8=0或x-10=0,
解得:x1=8,x2=10,
∴OA=10,OC=8;

(2)由折叠可知:△EBC≌△EDC,∴EB=ED,
∴CB=CD,又矩形OABC,∴AB=OC=8,
∴CB=CD=OA=10,又OC=8,
在Rt△OCD中,根据勾股定理得:OD=
CD2-OC2
=6,
∴AD=OA-OD=10-6=4,
又BE+EA=AB=8,且EB=ED,
∴DE+EA=8,即DE=8-EA,
在Rt△AED中,设AE=x,则DE=8-x,又AD=4,
根据勾股定理得:(8-x)2=x2+16,
整理得:16x=48,
解得:x=3,
则E的坐标为(10,3),又C(0,8),
设直线CE的解析式为y=kx+b,
将C与E坐标代入得:
b=8
10k+b=3

解得:k=-
1
2
,b=8,
则直线CE解析式为y=-
1
2
x+8,
令y=0求出x=16,即P坐标为(16,0);
此时BE=BA-EA=8-3=5,又BC=OA=10,
在Rt△BCE中,根据勾股定理得:
CE=
BE2+BC2
=5
5


(3)存在.满足条件的直线l有2条:y=-2x+12,y=2x-12.
如图2:准确画出两条直线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某家庭装修房屋,由甲,乙两个装修公司合作完成.先由甲装修公司单独装修3天,剩下的工作由甲,乙两个装修公路合作完成.工程进度满足如图所示的函数关系,该家庭共支付工资8000元.
(1)完成此房屋装修共需多少天?
(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2
(1)若点B在线段AC上,且S1=S2,则B点坐标为______;
(2)若点B在直线l1上,且S2=
3
S1,则∠BOA的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在如图所示的平面直角坐标系中,直线AB:y=k1x+b1与直线AD:y=k2x+b2相交于点A(1,3),且点B坐标为(0,2),直线AB交x轴负半轴于点C,直线AD交x轴正半轴于点D.
(1)求直线AB的函数解析式;
(2)根据图象直接回答,不等式k1x+b1>k2x+b2的解集;
(3)若点M为x轴一动点,当点M在什么位置时,使AM+BM的值最小?求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,如图,一轮船在离A港10千米的P地出发,向B港匀速行驶.30分钟后离港26千米(未到达B港前),设出发x小时后,轮船离A港y千米(未到达B港前).则y与x的函数关系式为(  )
A.y=
13
15
x
B.y=26xC.y=32x-10D.y=32x+10

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知有一长方形的周长为12,其中一边长为x,另一边长为y.
(1)求y与x的关系式,并求出x的范围;
(2)画出它的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了“还城市一片蓝天”,市政府决定大力发展公共交通,鼓励市民乘公交车或地铁出行.设每天公交车和地铁的运营收入为y百万元,客流量为x百万人,以(x,y)为坐标的点都在左图中对应的射线上.其中,运营收入=票价收入-运营成本.交通部门经过调研,采取了如图所示的调整方案.

(1)在左图中,代表公交车运营情况的(x,y)对应的点在射线______上,公交车的日运营成本是______百万元,当客流量x满足______时,公交车的运营收入超过4百万元;
(2)求调整后地铁每天的运营收入和客流量之间的函数关系,不要求写自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知直线y=-
3
3
x+2
与y轴交于点A,与x轴交于点B;若点P是直线AB上的一动点,坐标平面中存在点Q,使以O、B、P、Q为顶点的四边形为菱形,则点Q的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二元一次方程2x-y=2.
(1)请任意写出此方程的三组解;
(2)若
x=x0
y=y0
为此方程的一组解,我们规定(x0,y0)为某一点的坐标,请根据你在(1)中写出的三组解,对应写出三个点的坐标,并将这三个点描在平面直角坐标系中;
(3)观察这三个点的位置,你发现了什么?

查看答案和解析>>

同步练习册答案