精英家教网 > 初中数学 > 题目详情
17.平行四边形ABCD的对角线的交点在坐标原点,且AD∥x轴,若点A的坐标为(-1,2),则点C的坐标为(1,-2).

分析 根据平行四边形的性质得出四边形ABCD是中心对称图形,对称中心是对角线的交点,根据关于原点对称的图形的特点求出即可.

解答 解:∵四边形ABCD是中心对称图形,对称中心是对角线的交点,
又∵平行四边形ABCD的对角线交点在坐标原点,
∴A和C关于O对称,
∵点A的坐标为(-1,2),
∴点C的坐标为(1,-2),
故答案为:(1,-2).

点评 本题考查了平行四边形的性质的应用,注意:平行四边形的对角线互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.请写出一个以x,y为未知数的二元一次方程组$\left\{\begin{array}{l}{x+y=5}\\{x-y=-1}\end{array}\right.$,使其同时满足下列两个条件:①由两个二元一次方程组成;②二元一次方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,矩形ABCD的对角线交于O点,已知∠ABD=60°,过点O作EO⊥BD交BA延长线于点E,交AD于点N,连接ED、EC,EC分别交AD、BD于点F和点M.
(1)求证:四边形EACD是平行四边形;
(2)求$\frac{OM}{MD}$的值;
(3)请连接BN,在不增加新点与线段的前提下,图中现有三角形中,与△NOB的面积相等的三角形(注:不含△NOB)共有5个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图:正方形OABC的顶点O在坐标原点,点A的坐标为(12,5).
(1)正方形OABC的边长是13;
(2)点B的坐标是(7,17),点C的坐标是(-5,12);
(3)现有动点P、Q分别从点C、A同时出发,点P沿线段CB向终点B运动,速度为每秒2个单位,点Q沿折线A→O→C向终点C运动,速度为每秒3个单位,当其中一点到达终点之后,另一点也停止运动.P、Q在运动过程中,由点C、P、Q所组成的△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形能否为菱形?如果能,求出此时点P、Q运动的时间;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平行四边形ABCD中,点P是BC边的中点,设$\overrightarrow{CD}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b$,
(1)试用向量$\overrightarrow a,\overrightarrow b$表示向量$\overrightarrow{AP}$,那么$\overrightarrow{AP}$=$-\overrightarrow a+\frac{1}{2}\overrightarrow b$;
(2)在图中求作:$\overrightarrow{AB}-\overrightarrow{BP}$. (保留作图痕迹,不要求写作法,写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.发现问题:
如图(1),在△ABC中,∠A=2∠B,且∠A=60°.
我们可以进行以下计算:
由题意可知:∠B=30°,∠C=90°,
可得到:c=2b,a=$\sqrt{3}$b,
所以a2-b2=($\sqrt{3}$b)2-b2=2b2=b•c.
即a2-b2=bc.
提出猜想:
(1)(验证特殊三角形)如图(2),请你参照上述研究方法,对等腰直角三角形进行验证,判断猜想是否正确,并写出验证过程;
已知:△ABC中,∠A=2∠B,∠A=90°
求证:a2-b2=bc.
(2)(验证一般三角形)如图(3),
已知:△ABC中,∠A=2∠B,
求证:a2-b2=bc.
结论应用:
若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.关于x的方程(k2-1)x|k+1|-kx=3是一元二次方程,则k=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6. 如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.
女生进球个数的统计表
 进球数(个) 人数
 0 1
 1 2
 2 x
 3 y
 4 4
 5 2
(1)求这个班级的男生人数;
(2)补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;
(3)该校共有学生1880人,请你估计全校进球数不低于3个的学生大约有1160人.

查看答案和解析>>

同步练习册答案