精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在正方形网格上有6个三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中与①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

【答案】B

【解析】

先根据勾股定理计算出三角形各边的长度,再根据三边对应成比例两三角形相似进行判定即可.

设第个小正方形的边长为1,则△ABC的各边长分别为1,,,

②△BCD的各边长分别为1,,,

③△BDE的各边长分别为2,,,(为△ABC对应各边长的2倍),

④△BFG的各边长分别为5,,,(为△ABC对应各边长的),

⑤△FGH的各边长分别为2,,(为△ABC对应各边长的),

⑥△EFK的各边长分别为3,,,

根据三组对应边的比相等的两个三角形相似得到与三角形①相似的是③④⑤.
故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ΔP1OA1,ΔP2A1A2是等腰直角三角形,点P1、P2在函数y=(x>0)的图象上,斜边OA1、A1A2都在x轴上,则点A2的坐标是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,这一种方法称为配方法,利用配方法请解以下各题:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:当a取不同的实数时在得到的代数式a24a的值中是否存在最小值?请说明理由.

(3)应用:如图.已知线段AB6MAB上的一个动点,设AMx,以AM为一边作正方形AMND,再以MBMN为一组邻边作长方形MBCN.问:当点MAB上运动时,长方形MBCN的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,ABAC,点D在边BC上,点E在边AC上,且ADAE

1)如图1,当AD是边BC上的高,且∠BAD30°时,求∠EDC的度数;

2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,己知直线交于点、点,与交于点,直线轴交于点,且,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成淡薄”、“一般”、“较强”、“很强四个层次,并绘制成如图9的两幅尚不完整的统计图.

根据以上信息,解答下列问题:

(1)这次调查一共抽取了   名学生;

(2)请将条形统计图补充完整;

(3)分别求出安全意识为淡薄的学生占被调查学生总数的百分比、安全意识为很强的学生所在扇形的圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程

解:设x24xy

原式=(y+2)(y+6+4 (第一步)

y2+8y+16 (第二步)

=(y+42(第三步)

=(x24x+42(第四步)

1)该同学第二步到第三步运用了因式分解的   (填序号).

A.提取公因式 B.平方差公式

C.两数和的完全平方公式 D.两数差的完全平方公式

2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?   .(填)如果否,直接写出最后的结果   

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,边ABBC的长(ABBC)是方程x2﹣7x+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABCA→B→C→A的方向运动,运动时间为t(秒).

1)求ABBC的长;

2)当点P运动到边BC上时,试求出使AP长为时运动时间t的值;

3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2的图象上,则a的值为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案