Èçͼ£¨1£©£¬ÔÚRt¡÷ABCµÄ±ßABµÄͬ²à£¬·Ö±ðÒÔÈý±ßΪֱ¾¶×÷Èý¸ö°ëÔ²£¬´ó°ëÔ²ÒÔÍâµÄÁ½²¿·ÖÃæ»ý·Ö±ðΪS1¡¢S3£¬Èý½ÇÐεÄÃæ»ýΪS2£»
Èçͼ£¨2£©£¬Á½¸ö·´±ÈÀýº¯Êýy=
2
x
ºÍy=
1
x
ÔÚµÚÒ»ÏóÏÞÄÚµÄͼÏóÈçͼËùʾ£¬µãPÔÚy=
2
x
µÄͼÏóÉÏ£¬PC¡ÍxÖáÓÚµãC£¬PD¡ÍyÖáÓÚµãD£¬½»y=
1
x
µÄͼÏóÓÚ·Ö±ðÓÚµãA£¬B£¬µ±µãPÔÚy=
2
x
µÄͼÏóÉÏÔ˶¯Ê±£¬¡÷BOD£¬ËıßÐÎOAPB£¬¡÷AOCµÄÃæ»ý·Ö±ðΪS1¡¢S2¡¢S3£»
Èçͼ£¨3£©£¬µãEΪ?ABCD±ßADÉÏÈÎÒâÒ»µã£¬Èý¸öÈý½ÇÐεÄÃæ»ý·Ö±ðΪS1¡¢S2¡¢S3£»
Èçͼ£¨4£©£¬ÌÝÐÎABCDÖУ¬AB¡ÎCD£¬¡ÏDAB+¡ÏABC=90¡ã£¬AB=2CD£¬ÒÔAD¡¢DC¡¢CBΪ±ß×÷Èý¸öÕý·½ÐεÄÃæ»ý·Ö±ðΪS1¡¢S2¡¢S3£®
ÔÚÕâËĸöͼÐÎÖÐÂú×ãS1+S3=S2ÓÐ
 
£¨ÌîÐòºÅ£©£®
¾«Ó¢¼Ò½ÌÍø
·ÖÎö£ºÍ¼£¨1£©¸ù¾ÝAB2=AC2+BC2£¬°ëÔ²µÄÃæ»ýµÈÓÚ
1
2
¦Ðr2£¬¿ÉµÃ³öS1¡¢S2¡¢S3µÄ¹Øϵ£®
ͼ£¨2£©¹ýË«ÇúÏßÉÏÈÎÒâÒ»µãÒýxÖá¡¢yÖá´¹Ïߣ¬ËùµÃ¾ØÐÎÃæ»ýSÊǸö¶¨Öµ|k|£¬¡÷BODµÄÃæ»ýΪ¾ØÐÎÃæ»ýµÄÒ»°ë£¬¼´
1
2
|k|£¬´Ó¶ø¿ÉÅжϳöS1¡¢S2¡¢S3µÄ¹Øϵ£®
ͼ£¨3£©¸ù¾ÝƽÐÐËıßÐεÄÐÔÖʿɵÃS2=
1
2
SABCD£¬´Ó¶ø¿ÉµÃ³öS1+S3=S2£®
ͼ£¨4£©¹ýµãD×÷EE¡ÎBC½»ABÓÚµãE£¬µÃµ½Æ½ÐÐËıßÐÎDCBEºÍRt¡÷ADE£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖʺ͹´¹É¶¨Àí£¬²»ÄÑÖ¤Ã÷Èý¸öÕý·½Ðεı߳¤¶ÔÓ¦µÈÓÚËùµÃÖ±½ÇÈý½ÇÐεıߣ®
½â´ð£º½â£º£¨1£©Èçͼ£º¿ÉµÃS1+S3=
1
2
¦Ð(
AC
2
)
2
+
1
2
¦Ð(
BC
2
)
2
+S2-
1
2
¦Ð(
AB
2
)
2
=
1
2
¦Ð£¨AC2+BC2-AB2£©+S2£¬
ÓÖ¡ßAB2=AC2+BC2£¬
¡àS1+S3=S2£®

£¨2£©¸ù¾ÝkµÄ¼¸ºÎÒâÒå¿ÉµÃ£ºSBDO=
1
2
|k|=
1
2
£¬SAOC=
1
2
|k|=
1
2
£¬SOAPB=2-SBDO-SAOC=1£¬
¡àS1+S3=S2£®

£¨3£©¸ù¾ÝƽÐÐËıßÐεÄÐÔÖʿɵÃS2=
1
2
SABCD£¬
¡àS1+S2=
1
2
SABCD£¬
¡àS1+S3=S2£®

£¨4£©¾«Ó¢¼Ò½ÌÍø¡ßAB¡ÎDC£¬
¡àËıßÐÎDCBEÊÇƽÐÐËıßÐΣ¬
¡àDC=BE£¬BC=DE£¬¡ÏABC=¡ÏAED£¬
¡ß¡ÏDAB+¡ÏABC=90¡ã£¬2DC=AB£¬
¡àDC=AE£¬¡ÏDAE+¡ÏAED=90¡ã£¬
¡à¡ÏADE=90¡ãÄÇôAD2+DE2=AE2£¬
¡ßS1=AD2£¬S2=DC2=AE2£¬S3=BC2=AE2£¬
¡àS2=S1+S3£®
×ÛÉϿɵã¨1£©£¨2£©£¨3£©£¨4£©ËĸöͼÐξùÂú×ãS2=S1+S3£®
¹Ê´ð°¸Îª£¨1£©£¨2£©£¨3£©£¨4£©£®
µãÆÀ£º±¾Ì⿼²éÁ˹´¹É¶¨Àí¡¢·´±ÈÀýº¯ÊýµÄ¼¸ºÎÒâÒ弰ƽÐÐËıßÐεÄÐÔÖÊ£¬Éæ¼°µÄ֪ʶµã½Ï¶à£¬ÄѶȽϴ󣬽â´ð±¾Ìâ¹Ø¼üÊǸù¾Ý·´±ÈÀýº¯ÊýµÄ¼¸ºÎÒâÒ壬ƽÐÄËıßÐεÄÐÔÖÊ£¬ÌÝÐεÄ֪ʶ·Ö±ð±íʾ³ö¸÷ͼÖеÄS1¡¢S2¡¢S3£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Àú³ÇÇøÈýÄ££©£¨1£©Èçͼ1Ëùʾ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬E¡¢FÊǶԽÇÏßBDÉϵÄÁ½µã£¬ÇÒBE=DF£¬Á¬½ÓAE¡¢CF£®ÇëÄã²ÂÏ룺AEÓëCFÓÐÔõÑùµÄÊýÁ¿¹Øϵ£¿²¢¶ÔÄãµÄ²ÂÏë¼ÓÒÔÖ¤Ã÷£®
£¨2£©Èçͼ2Ëùʾ£¬ÔÚRt¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬µãDÔÚBC±ßÉÏ£¬ÇÒ¡÷ABDÊǵȱßÈý½ÇÐΣ®ÈôAB=2£¬Çó¡÷ABCµÄÖܳ¤£®£¨½á¹û±£Áô¸ùºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Öн­ÏضþÄ££©Èçͼ£¬¡ÑOµÄÔ²ÐÄÔÚRt¡÷ABCµÄÖ±½Ç±ßACÉÏ£¬¡ÑO¾­¹ýC¡¢DÁ½µã£¬Óëб±ßAB½»ÓÚµãE£¬Á¬½ÓBO¡¢ED£¬ÇÒBO¡ÎED£¬×÷ÏÒEF¡ÍACÓÚG£¬Á¬½ÓDF£®
£¨1£©ÇóÖ¤£ºABΪ¡ÑOµÄÇÐÏߣ»
£¨2£©Á¬½ÓCE£¬ÇóÖ¤£ºAE2=AD•AC£»
£¨3£©Èô¡ÑOµÄ°ë¾¶Îª5£¬sin¡ÏDFE=
35
£¬ÇóEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÌìºÓÇøһģ£©Èçͼ£¨1£©£¬AB¡¢BC¡¢CD·Ö±ðÓë¡ÑOÏàÇÐÓÚµãE¡¢F¡¢G£¬ÇÒAB¡ÎCD£¬ÈôOB=6£¬OC=8£¬
£¨1£©ÇóBCºÍOFµÄ³¤£»
£¨2£©ÇóÖ¤£ºE¡¢O¡¢GÈýµã¹²Ïߣ»
£¨3£©Ð¡Ò¶´ÓµÚ£¨1£©Ð¡ÌâµÄ¼ÆËãÖз¢ÏÖ£ºµÈʽ
1
OF2
=
1
OB2
+
1
OC2
³ÉÁ¢£¬ÓÚÊÇËýµÃµ½ÕâÑùµÄ½áÂÛ£º
Èçͼ£¨2£©£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬CD¡ÍAB£¬´¹×ãΪD£¬ÉèBC=a£¬AC=b£¬CD=h£¬ÔòÓеÈʽ
1
a2
+
1
b2
=
1
h2
³ÉÁ¢£®ÇëÄãÅжÏСҶµÄ½áÂÛÊÇ·ñÕýÈ·£¬ÈôÕýÈ·£¬Çë¸øÓèÖ¤Ã÷£¬Èô²»ÕýÈ·£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª£ºÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬¡ÏB=30¡ã£¬CD¡ÍABÓÚD£®
ÇóÖ¤£ºAD=
14
AB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª£ºÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬EΪABµÄÖе㣬ÇÒDE¡ÍABÓÚE£¬Èô¡ÏCAD£º¡ÏDAB=1©s2£¬Çó¡ÏBµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸