精英家教网 > 初中数学 > 题目详情

如图,PA为⊙O的切线,A为切点,PBC为割线,∠APC的平分线PF交AC于点F,交AB于点E.
(1)求证:AE=AF;
(2)若PB:PA=1:2,M是数学公式上的点,AM交BC于D,且PD=DC,试确定M点在BC上的位置,并证明你的结论.

(1)证明:∵PF平分∠APC,
∴∠1=∠2,
又∵PA是⊙O的切线,
∴∠C=∠PAB.
∵∠AEF=∠1+∠PAB,∠AFE=∠2+∠C,
∴∠AEF=∠AFE,即AE=AF.

(2)解:M点在的中点上,
证明:∵PA为⊙O的切线,A为切点,PBC为割线,
∴PA2=PB×PC,
∵PB:PA=1:2,
假设PB=x,PA=2x,
∴4x2=x•PC,
∴PC=4x,
∵PD=DC,
∴PD=DC=2x,
∴PA=PD,
又∵∠1=∠2,
∴PN⊥AD,(等腰三角形的三线合一),
∴AN⊥EF,
∵AE=AF,
∴∠EAN=∠FAN,
=
∴M点在的中点上.
分析:(1)根据∠AEF=∠APF+∠PAB;同理可得∠AFP=∠FPC+∠C;由弦切角定理知:∠PAB=∠C,由PF平分∠APC知:∠APF=∠CPF;故∠AEF=∠AFE,由此得证.
(2)根据切割线定理首先得出PD=DC=2x,进而得出PA=PD,再得出AN⊥EF,进而得出∠EAN=∠FAN,得出=,即M点在的中点上原题得证.
点评:此题主要考查了三角形外角的性质、弦切角定理、圆周角定理的推论和等腰三角形的判定和性质等知识,根据已知得出AN⊥EF是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,PA、PB分别切⊙O于A、B两点,如果∠P=60°,PA=2,那么AB的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,PA、PB分别切⊙O于点A、B,M是劣弧AB上的一个动点(点A、B除外),过M作⊙O的切线分别交PA、PB于点C、D.设CM的长为x,△PCD的周长为y,在下列图象中,大致表示y与x之间的函数关系的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田质检)如图,PA、PB分别切⊙O于A、B两点,点C在优弧
ACB
上,∠P=80°,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA,PB分别切⊙O于点A和点B,C是
AB
上任一点,过C的切线分别交PA,PB于D,E.若⊙O的半径为6,PO=10,则△PDE的周长是(  )

查看答案和解析>>

同步练习册答案