精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=ACAD△ABC的角平分线,点OAB的中点,连接DO并延长到点E,使OE=OD,连接AEBE

1)求证:四边形AEBD是矩形;

2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

【答案】解:(1)证明:OAB的中点,连接DO并延长到点E,使OE=OD

四边形AEBD是平行四边形。

∵AB=ACAD△ABC的角平分线,∴AD⊥BC

∴∠ADB=90°

平行四边形AEBD是矩形。

2)当∠BAC=90°时,矩形AEBD是正方形。理由如下:

∵∠BAC=90°AB=ACAD△ABC的角平分线,∴AD=BD=CD

由(1)得四边形AEBD是矩形,矩形AEBD是正方形。

【解析】

试题(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;

2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.

1)证明:OAB的中点,连接DO并延长到点E,使OE=OD

四边形AEBD是平行四边形,

∵AB=ACAD∠BAC的角平分线,

∴AD⊥BC

∴∠ADB=90°

平行四边形AEBD是矩形;

2)当∠BAC=90°时,

理由:∵∠BAC=90°AB=ACAD∠BAC的角平分线,

∴AD=BD=CD

由(1)得四边形AEBD是矩形,

矩形AEBD是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列多面体,并把下表补充完整.

名称

三棱柱

四棱柱

五棱柱

六棱柱

图形

顶点数

6

10

12

棱数

9

12

面数

5

8

观察上表中的结果,你能发现之间有什么关系吗?请写出关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,CD是⊙O的弦,AB是⊙O的直径,且CD//AB,连接AC,AD,OD,其中AC=CD,过点B的切线交CD的延长线于E.
(1)求证:DA平分∠CDO;
(2)若AB=12,求图中阴影部分图形的周长(结果精确到1,参考数据:π=3.1, =1.4, =1.7).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.

(1)画一个底边为4,面积为8的等腰三角形;

(2)画一个面积为10的等腰直角三角形;

(3)画一个面积为12的平行四边形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=mx+n与双曲线y= 相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+6x+c(a≠0)交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5),点B的坐标为(1,0).

(1)求此抛物线的解析式及定点坐标;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并说明理由;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(
A.2
B.8
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线相交于点平分平分

的度数;

的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠A=110°,E、F分别是边ABBC的中点,EPCD于点P,则∠FPC等于( )

A. 45° B. 35° C. 55° D. 50°

查看答案和解析>>

同步练习册答案