精英家教网 > 初中数学 > 题目详情

如图所示,在?ABCD中,E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是
①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE.


  1. A.
    ①或②
  2. B.
    ②或③
  3. C.
    ③或④
  4. D.
    ①或③或④
C
分析:③可以采用一组对边平行且相等的四边形是平行四边形证得;
④可以采用两组对边分别平行的四边形是平行四边形证得;
①和②都不能证得四边形ABCD是平行四边形;所以此题应选择③与④.
解答:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,∠B=∠D,AD∥BC,AD=BC,
如果∠BAE=∠FCD,
则△ABE≌△DFC(ASA)
∴BE=DF,
∴AD-DF=BC-BE,
即AF=CE,
∵AF∥CE,
∴四边形ABCD是平行四边形;(③正确)
如果∠BEA=∠FCE,
则AE∥CF,
∵AF∥CE,
∴四边形ABCD是平行四边形;(④正确)
故选C.
点评:此题考查了平行四边形的性质与判定.解题的关键是选择适宜的证明方法:此题③采用一组对边平行且相等的四边形是平行四边形;④采用两组对边分别平行的四边形是平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案