【题目】已知和都是等腰直角三角形,.
(1)若为上一动点时(如图1),
①求证:.
②试求线段,,间满足的数量关系.
(2)当点在内部时(如图2),延长交于点.
①求证:.
②连结,当为等边三角形时,直接写出与的直角边长之比.
【答案】(1)①证明见解析;②,理由见解析;(2)①证明见解析;②
【解析】
(1)①根据等腰直角三角形的性质和“SAS”证明即可;
②先证明,然后根据勾股定理说明即可;
(2)①由可证,然后利用角的和差即可求出;
②先证明△BCD≌△BEC,从而可得∠DCB=∠ECB=45°,∠DBC=∠EBC=30°,设OC=OE=x,根据勾股定理分别表示出CE和BC的长,然后求比值即可.
(1)①证明:∵和都是等腰直角三角形,,
∴, ,,
∴,
∴,
∴.
②解:∵,
∴,,
∴,
∴,即;
(2)①证明:∵和都是等腰直角三角形,,
∴由(1)易知,
∴,
∴
,
∴,即;
②∵△BDE是等边三角形,
∴BD=BE=DE,
又∵CD=CE,BC=BC,
∴△BCD≌△BEC,
∴∠DCB=∠ECB=45°,∠DBC=∠EBC=30°,
∴BC⊥DE,
∴△COE是等腰直角三角形,
设OC=OE=x,则CE=x,BE=2OE=2x,BO=x,
∴BC=x+x,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,∠B=30°,∠BAC=80°,且BC+AC=12cm,①求∠CAE的度数;②求△AEC的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形中,,,、分别是线段、上的动点.
(1)能否在线段上作出点E,在线段上作出点,使的周长最小?______(用“能”或“不能”填空);
(2)如果能,请你在图中作出满足条件的点、(不要求写出作法),并直接写出的度数;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:
(1)这次抽查了四个品牌的饮料共 瓶;
(2)请你在答题卡上补全两幅统计图;
(3)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究问题:已知,画一个角,使,且交于点.与有怎样的数量关系?
(1)我们发现与有两种位置关系:如图1与图2所示.
①图1中与数量关系为____________;图2中与数量关系为____________.请选择其中一种情况说明理由.
②由①得出一个真命题(用文字叙述):____________________________.
(2)应用②中的真命题,解决以下问题:若两个角的两边互相平行,且一个角比另一个角的2倍少30°,请直接写出这两个角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某人由西向东行走到点A,测得一个圆形花坛的圆心O在北偏东60°,他继续向东走了60米后到达点B,这时测得圆形花坛的圆心O在北偏东45°,已知圆形花坛的半径为51米,若沿AB的方向修一条笔直的小路(忽略小路的宽度),则此小路会通过圆形花坛吗?请说明理由.(参考数据 ≈1.73,≈1.41)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.
(1)求证:D为BC的中点;
(2)过点O作OF⊥AC,于F,若AF=,BC=2,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-5,5),(-2,3).
(1)请在图中的网格平面内画出平面直角坐标系xOy;
(2)请画出△ABC关于y轴对称的△A1B1C1,并写出顶点A1,B1,C1的坐标
(3)请在x轴上求作一点P,使△PB1C的周长最小.请标出点P的位置(保留作图痕迹,不需说明作图方法)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com