精英家教网 > 初中数学 > 题目详情
精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.
分析:(1)根据题意,AD是△ABC的边BC上的中线,可得BD=CD,∴△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,相减即可得到周长差;
(2)根据三角形的面积等于底边长与高线乘积的一半,列出等式,解答出即可;
解答:解:(1)∵AD是△ABC的中线,
∴BD=CD,
∴△ABD与△ACD的周长之差为:
(AB+BD+AD)-(AC+CD+AD)=AB+BD+AD-AC-CD-AD=AB-AC=5-3=2(cm);

(2)设AC边上的高为hcm,
则S△ABC=
1
2
AB•2
=
1
2
AC•h

解得,h=
10
3
(cm).
答:求△ABD与△ACD的周长之差2cm,AC边上的高
10
3
cm.
点评:本题主要考查了三角形的中线、高和三角形面积的求法,掌握三角形的面积等于底边长与高线乘积的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案