【题目】已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.
【答案】(1)抛物线的解析式为y=﹣;(2)存在,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);(3)满足条件的点E为(﹣7,0)或(﹣1,0)或(,0)或(,0).
【解析】试题分析:(1)因为抛物线经过点A(﹣4,0),B(1,0),所以可以设抛物线为y=﹣(x+4)(x﹣1),展开即可解决问题;
(2)先证明∠ACB=90°,点A就是所求的点P,求出直线AC解析式,再求出过点B平行AC的直线的解析式,利用方程组即可解决问题;
(3)分AC为平行四边形的边,AC为平行四边形的对角线讨论即可解决问题.
试题解析:解:(1)抛物线的解析式为y=﹣(x+4)(x﹣1),即;
(2)存在.当x=0, =2,则C(0,2),∴OC=2,∵A(﹣4,0),B(1,0),∴OA=4,OB=1,AB=5,当∠PCB=90°时,∵AC2=42+22=20,BC2=22+12=5,AB2=52=25
∴AC2+BC2=AB2,∴△ACB是直角三角形,∠ACB=90°,∴当点P与点A重合时,△PBC是以BC为直角边的直角三角形,此时P点坐标为(﹣4,0);
当∠PBC=90°时,PB∥AC,如图1,设直线AC的解析式为y=mx+n,把A(﹣4,0),C(0,2)代入得: ,解得: ,∴直线AC的解析式为y=x+2,∵BP∥AC,∴直线BP的解析式为y=x+p,把B(1,0)代入得+p=0,解得p=﹣,∴直线BP的解析式为y=x﹣,解方程组: 得: 或,此时P点坐标为(﹣5,﹣3);
综上所述,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);
(3)存在点E,设点E坐标为(m,0),F(n, ),分三种情况讨论:
①当AC为边,CF1∥AE1,易知CF1=3,此时E1坐标(﹣7,0);
②当AC为边时,AC∥EF,易知点F纵坐标为﹣2,∴ =﹣2,解得n= ,得到F2(,﹣2),F3(,﹣2),根据中点坐标公式得到: = 或 =,解得m=或,此时E2(,0),E3(,0);
③当AC为对角线时,AE4=CF1=3,此时E4(﹣1,0).
综上所述满足条件的点E为(﹣7,0)或(﹣1,0)或(,0)或(,0).
科目:初中数学 来源: 题型:
【题目】某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
()若商场预计进货款为元,则这两种台灯各购进多少盏?
()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,CD⊥AB于点D,DA=DC=4,DB=2,AF⊥BC于点F,交DC于点E.
(1)求线段AE的长;
(2)若点G是AC的中点,点M是线段CD上一动点,连结GM,过点G作GN⊥GM交直线AB于点N,记△CGM的面积为S1,△AGN的面积为S2.在点M的运动过程中,试探究:S1与S2的数量关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育用品商店老板到体育商场批发篮球、足球、排球共个,得知该体育商场篮球、足球、排球平均每个元,篮球比排球每个多元,排球比足球每个少元.
(1) 求出这三种球每个各多少元;
(2) 经决定,该老板批发了这三种球的任意两种共个,共花费了1060元,问该老板可能买了哪两种球?各买了几个;
(3) 该老板打算将每一种球各提价元后,再进行打折销售,若排球、足球打八折,篮球打八五折,在(2)的情况下,为获得最大利润,他批发的一定是哪两种球?各买了几个?计算并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,点D在直线BC上,E在AC上,且AC=CD,DE=AB.
(1)如图②,将△ECD沿CB方向平移,使点E落在AB上,得△E1C1D1,求平移的距离;
(2)如图③,将△ECD绕点C逆时针旋转,使点E落在AB上,得△E2CD2,求旋转角∠DCD2的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题)如图①,点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C互补,则线段AD与CD有什么数量关系?
(探究)
探究一:如图②,若∠A=90°,则∠C=180°﹣∠A=90°,即AD⊥AB,CD⊥BC,又因为BD平分∠ABC,所以AD=CD,理由是: .
探究二:若∠A≠90°,请借助图①,探究AD与CD的数量关系并说明理由.
[理论]点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C互补,则线段AD与CD的数量关系是 .
[拓展]已知:如图③,在△ABC中,AB=AC,∠A=100°,BD平分∠ABC.
求证:BC=AD+BD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:
(1)四边形EBFD是矩形;
(2)DG=BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com