精英家教网 > 初中数学 > 题目详情

【题目】如图,以ABC的各边,在边BC的同侧分别作三个正方形ABDIBCFEACHG

1)求证:BDEBAC

2)求证:四边形ADEG是平行四边形.

3)直接回答下面两个问题,不必证明:

ABC满足条件_____________________时,四边形ADEG是矩形.

ABC满足条件_____________________时,四边形ADEG是正方形?

【答案】(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°AC=

【解析】

1)根据全等三角形的判定定理SAS证得△BDE≌△BAC

2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+DAG=180°,易证EDGA;最后由“一组对边平行且相等”的判定定理证得结论;

3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;

②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:ACAB

1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AGAB=BDBC=BE,∠GAC=EBC=DBA=90°,∴∠ABC=EBD(同为∠EBA的余角).

在△BDE和△BAC中,∵,∴△BDE≌△BACSAS);

2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=BDE

AD是正方形ABDI的对角线,∴∠BDA=BAD=45°.

∵∠EDA=BDE﹣∠BDA=BDE45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC45°=225°﹣∠BAC,∴∠EDA+DAG=BDE45°+225°﹣∠BAC=180°,∴DEAG,∴四边形ADEG是平行四边形(一组对边平行且相等).

3)①当四边形ADEG是矩形时,∠DAG=90°.

则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;

②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD

由①知,当∠DAG=90°时,∠BAC=135°.

∵四边形ABDI是正方形,∴ADAB

又∵四边形ACHG是正方形,∴AC=AG,∴ACAB,∴当∠BAC=135°且ACAB时,四边形ADEG是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】新定义:[abc]为二次函数y=ax2+bx+ea≠0abc为实数)的图象数,如:y=-x2+2x+3图象数[-123]

1)二次函数y=x2-x-1图象数

2)若图象数[mm+1m+1]的二次函数的图象与x轴只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一张长方形纸片(如图①),,将纸片折叠,使落在边上,的对应点,折痕为(如图②),再将长方形为折痕向右折叠,若点落在的三等分点上,则的长为(

A.8B.10C.810D.812

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】材料:思考的同学小斌在解决连比等式问题:已知正数满足,求的值时,采用了引入参数法,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出之间的关系,从而解决问题.过程如下:

解;设,则有:

将以上三个等式相加,得.

都为正数,

,即.

.

仔细阅读上述材料,解决下面的问题:

1)若正数满足,求的值;

2)已知互不相等,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网络中,ABC的三个顶点都在格点上,点ABC的坐标分别为A(-24)B(-20)C(-41),结合所给的平面直角坐标系解答下列问题:

1)画出ABC关于原点O中心对称图形A1B1C1.

2)平移ABC,使点A移动到点A2(02),画出平移后的A2B2C2并写出点B2C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.

1)当x≥50时,求y关于x的函数关系式;

2)若某企业201810月份的水费为620元,求该企业201810月份的用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQBCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+2的图象与反比例函数y=的图象在第一象限的交点为PPAx轴于点A,PBy轴于点B,函数y=kx+2的图象分别交x轴,y轴于点C,D,已知OCD的面积SOCD=1,=

(1)求点D的坐标;

(2)求k,m的值;

(3)写出当x>0时,使一次函数y=kx+2的值大于反比例函数y=的值x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年全球超级计算机500强名单公布,中国超级计算机“神威·太湖之光”和“天河二号”携手夺得前两名.已知“神威·太湖之光”的浮点运算速度是“天河二号”的2.74倍.这两种超级计算机分别进行100亿亿次浮点运算“神威·太湖之光”的运算时间比“天河二号”少18.75秒,求这两种超级计算机的浮点运算速度.设“天河二号”的浮点运算速度为亿亿次/秒,依题意,可列方程为___________

查看答案和解析>>

同步练习册答案