【题目】材料:思考的同学小斌在解决连比等式问题:“已知正数,,满足,求的值”时,采用了引入参数法,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出,,之间的关系,从而解决问题.过程如下:
解;设,则有:
,,,
将以上三个等式相加,得.
,,都为正数,
,即,.
.
仔细阅读上述材料,解决下面的问题:
(1)若正数,,满足,求的值;
(2)已知,,,互不相等,求证:.
【答案】(1)k=;(2)见解析.
【解析】
(1)根据题目中的例子可以解答本题;
(2)将题目中的式子巧妙变形,然后化简即可证明结论成立.
解:(1)∵正数x、y、z满足,
∴x=k(2y+z),y=k(2z+x),z=k(2x+y),
∴x+y+z=3k(x+y+z),
∵x、y、z均为正数,
∴k=;
(2)证明:设=k,
则a+b=k(a-b),b+c=2k(b-c),c+a=3k(c-a),
∴6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a),
∴6(a+b)+3(b+c)+2(c+a)=0,
∴8a+9b+5c=0.
故答案为:(1)k=;(2)见解析.
科目:初中数学 来源: 题型:
【题目】一个水果市场某品种苹果的销售方式如下表:
购买苹数量(千克) | 不超过千克部分 | 超过千克的部分 |
每千克的价格(元) | 元 | 元 |
(1)如果小明购买千克的苹果,那么他需要付___________元.
(2)小明分两次共购买千克的苹果,第二次购买的数量多于第一次购买的数量,若他两次共付元,求他两次分别购买苹果的数量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)
(t>0).
(1)求线段AC的长.
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式,并写出t的取值范围.
(3)若边EF所在直线与边AC交于点Q,连结PQ,如图2,直接写出△ABC的某一顶点到P、Q两点距离相等时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.
(1)求A、B两种礼盒的单价分别是多少元?
(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?
(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推动全面健身,县政府在城南新城新建体育休闲公园,公园设有A、B、C、D四个出入口供广大市民进出.
(1)小明的爸爸去公园进行体育锻炼,从出入口A进入的概率是________;
(2)张老师和小明的爸爸一起约定去参加锻炼,请用画树状图或列表法求他们选择从不同出入口进体育场的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.
(1)求证:△BDE≌△BAC;
(2)求证:四边形ADEG是平行四边形.
(3)直接回答下面两个问题,不必证明:
①当△ABC满足条件_____________________时,四边形ADEG是矩形.
②当△ABC满足条件_____________________时,四边形ADEG是正方形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在三角形ABC中,∠A=90°,AB=AC=2,将△ABC折叠,使点B落在边AC上点D (不与点A重合)处,折痕为PQ,当重叠部分△PQD为等腰三角形时,则AD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:一次函数y=﹣2x+10的图象与反比例函数y=(k>0)的图象相交于A、B两点(A的B的右侧).
(1)当A(4,2)时,求反比例函数的解析式:
(2)当A的横坐标是3,B的横坐标是2时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.
①求C点的坐标;
②求D点的坐标;
③求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com