【题目】如图1,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)
(t>0).
(1)求线段AC的长.
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式,并写出t的取值范围.
(3)若边EF所在直线与边AC交于点Q,连结PQ,如图2,直接写出△ABC的某一顶点到P、Q两点距离相等时t的值.
【答案】(1)5(2)S=(5﹣t)2(3)综上所述,t=s或s或s时,满足题目要求
【解析】分析: (1)在Rt△ABD中,利用勾股定理求出AD,在Rt△BDC中,求出CD即可.
(2)分2种情形求解:如图1中,当0<t≤1时,重叠部分是四边形PMDN.如图2中,当≤t<5时,重叠部分是四边形PNMF.
(3)如图5中,当PQ的垂直平分线经过当A时.根据PE=PA,可得t=5-t解决问题.如图6中,当PQ的垂直平分线经过点B时,作EN⊥AC于N,EP交BD于M.在Rt△BQD中,根据BQ2=QD2+BD2,列出方程即可解决问题.
详解:
(1)在Rt△ABD中,∠BDA=90°,AB=5,BD=3,
∴AD===4,
在Rt△BCD中,∠BDC=90°,BD=3,tanc=3,∴CD===1,
∴AC=AD+CD=4+1=5.
(2)如图1中,当0<t≤1时,重叠部分是四边形PMDN.
易知PA=t,AM=t,PM=t,DM=4﹣t,
∴S=t(4﹣t)=﹣t2+t.
如图2中,当≤t<5时,重叠部分是四边形PNMF.
∵AB=5,AC=AD+CD=4+1=5,
∴AC=AB,
易证PB=PE=5﹣t,PF=(5﹣t),PN=(5﹣t),
S=(5﹣t)(5﹣t)﹣(5﹣t)(5﹣t)=(5﹣t)2.
(3)如图3中,当A到P、Q距离相等时.
易知四边形APEQ时菱形,∴PE=PA,即t=5﹣t,∴t=.
如图4中,当B到P、Q距离相等时,作EN⊥AC于N,EP交BD于M.
易知四边形PENG是矩形,四边形DMEN是矩形,∴PG=EN=t,EM=DN=PE﹣PM=(5﹣t),
QN=EN=t,∴QD=4﹣(5﹣t)=t﹣1,在Rt△BQD中,∵BQ2=QD2+BD2,
∴(5﹣t)2=32+(t﹣1)2,∴t=.
如图5中,当C到P、Q距离相等时,作PM⊥AC与M,连接PC.
由PC=CQ,可得:(t)2+(5﹣t)2=t2,解得t=
综上所述,t=s或s或s时,满足题目要求.
点睛: 本题考查三角形综合题、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.
科目:初中数学 来源: 题型:
【题目】如图:已知,对应的坐标如下,请利用学过的变换(平移、旋转、轴对称)知识经过若干次图形变化,使得点A与点E重合、点B与点D重合,写出一种变化的过程_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新定义:[a,b,c]为二次函数y=ax2+bx+e(a≠0,a,b,c为实数)的“图象数”,如:y=-x2+2x+3的“图象数”为[-1,2,3]
(1)二次函数y=x2-x-1的“图象数”为 .
(2)若图象数”是[m,m+1,m+1]的二次函数的图象与x轴只有一个交点,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=8,BC=6.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
(1)求线段CD的长;
(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
(3)当点P在线段AD上运动时,求S与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣8ax+12a(a<0)与x轴交于A、B两点(点A在点B的左边),抛物线上另有一点C在第一象限,且使△OCA∽△OBC,
(1)求OC的长及的值;
(2)设直线BC与y轴交于P点,当点C恰好在OP的垂直平分线上时,求直线BP和抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境
在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.
操作发现
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于______(用含α的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一张长方形纸片(如图①),,将纸片折叠,使落在边上,为的对应点,折痕为(如图②),再将长方形以为折痕向右折叠,若点落在的三等分点上,则的长为( )
A.8B.10C.8或10D.8或12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料:思考的同学小斌在解决连比等式问题:“已知正数,,满足,求的值”时,采用了引入参数法,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出,,之间的关系,从而解决问题.过程如下:
解;设,则有:
,,,
将以上三个等式相加,得.
,,都为正数,
,即,.
.
仔细阅读上述材料,解决下面的问题:
(1)若正数,,满足,求的值;
(2)已知,,,互不相等,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+2的图象与反比例函数y=的图象在第一象限的交点为P,PA⊥x轴于点A,PB⊥y轴于点B,函数y=kx+2的图象分别交x轴,y轴于点C,D,已知△OCD的面积S△OCD=1,=
(1)求点D的坐标;
(2)求k,m的值;
(3)写出当x>0时,使一次函数y=kx+2的值大于反比例函数y=的值x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com