精英家教网 > 初中数学 > 题目详情
如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.
(1)你添加的条件是
 

(2)请写出证明过程.
考点:全等三角形的判定与性质
专题:几何综合题
分析:(1)此题是一道开放型的题目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;
(2)根据全等三角形的判定定理AAS推出△ABD≌△ACD,再根据全等三角形的性质得出即可.
解答:解:(1)添加的条件是∠B=∠C,
故答案为:∠B=∠C;

(2)证明:在△ABD和△ACD中
∠B=∠C
∠1=∠2
AD=AD

∴△ABD≌△ACD(AAS),
∴AB=AC.
点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=-
4
3
x+b与x轴交于点A(6,0),与y轴交于点B.
(1)填空:b=
 

(2)点C在线段OB上,其坐标为(0,m),过点C作CE⊥AB于点E,点D为线段OA上的一个动点,连接CD、DE.
①当m=3,且DE∥y轴时,求点D的坐标;
②在点D运动的过程中,是否存在以CE为直径的圆恰好与x轴相切于点D?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

因式分解
(1)x3-xy2;                     
(2)ab3-10a2b2+25a3b.

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,抛物线与x轴交于点A(-1,0)和点B(1,0),直线y=2x-1与y轴交于点C,与抛物线交于点C、D.
(1)求抛物线的解析式;
(2)求点A到直线CD的距离;
(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G、P、Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题解决
如图(1),已知,在等腰直角△ABC中,∠BAC=90°,点D在BC上.以AD为边作正方形ADEF,连接CF.求证:CF=BD;
问题变式
如图(2),当点D在线段BC的延长线上时,其它条件不变,猜想CF、BC、CD三条线段之间的关系并说明理由;
问题拓展
如图(3),已知,点D是等边△ABC的边BC延长线上的一点,连接AD,以AD为边作菱形ADEF,并且使∠FAD=60°,CF垂直平分AD,猜想CG与FG之间的数量关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(x+1)2-(x+2)(x-2)=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

当5个整数从小到大排列后,其中位数为4,如果这组数据的唯一众数是6,那么这5个数的和的最大值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若方程组
x+y=3
x-2y=a-3
的解是正数,且x不大于y,则a的取值范围是
 

查看答案和解析>>

同步练习册答案