精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.
分析:(1)分别以点A、C为圆心,以大于
1
2
AC长度为半径画弧,两弧在AC两边相交于,然后过这两点作直线DE即可;
(2)连接CE,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,设∠A=x,然后根据等边对等角的性质以及等腰三角形两底角相等表示出∠ACB,然后列出方程求解即可.
解答:解:(1)如图所示,DE即为所求作的边AC的垂直平分线;

(2)如图,连接CE,
∵DE是AC的垂直平分线,
∴AE=CE,
∴∠A=∠ACE,
∵AE=BC,
∴CE=BC,
∴∠B=∠CEB,
设∠A=x,
则∠CEB=∠A+∠ACE=x+x=2x,
在△BCE中,∠BCE=180°-2×2x=180°-4x,
∴∠ACB=∠ACE+∠BCE=x+180°-4x=120°,
解得x=20°,
即∠A=20°.
点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,线段垂直平分线的作法,难度中等,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案