【题目】某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;
(3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.
【答案】(1)每台空调的进价为1600元,则每台电冰箱的进价为2000元;
(2)合理的方案共有7种;当购进电冰箱34台,空调66台获利最大,最大利润为13300元;
(3)当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大;当k=50时,每种进货方案的总利润都一样.
【解析】
试题分析:(1)由题意设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,,根据商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等列方程,解方程.
(2)题目有三个要求,总利润不低于13000元,购进空调数量不超过电冰箱数量的2倍,和现实意义冰箱空调的数量必须取整数,根据这三个要求,逐一考虑,利润=单件的利润(售价-进价)×数量,总利润=电冰箱的利润+空调的利润,得到y关于x的一次函数,根据第二个要求列出不等式,在一二两个要求的范围内找到整数解.
(3)电冰箱出产价下调的k元,就是每台电冰箱利润增加k元,依据题意求出总利润y关于x的一元一次函数,由函数解析式及一次函数的性质可知,总利润的最大值由k-50的正负性决定,在此分三种情况讨论.
试题解析:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据题意得:,解得:x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,
答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.
(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,根据题意得:,解得:,∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;
∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,
∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),
答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.
(3)当厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,
则利润y=(2100﹣2000+k)x+(1750﹣1600)(100﹣x)=(k﹣50)x+15000,
当k﹣50>0,即50<k<100时,y随x的增大而增大,∵,∴当x=40时,这100台家电销售总利润最大,即购进电冰箱40台,空调60台;
当k﹣50<0,即0<k<50时,y随x的增大而减小,∵,∴当x=34时,这100台家电销售总利润最大,即购进电冰箱34台,空调66台;
当k=50时,每种进货方案的总利润都一样;
答:当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大;当k=50时,每种进货方案的总利润都一样.
科目:初中数学 来源: 题型:
【题目】图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示,根据图中的信息,回答问题:
(1)根据图2补全表格:
(2)如表反映的两个变量中,自变量是 ,因变量是 ;
(3)根据图象,摩天轮的直径为 m,它旋转一周需要的时间为 min.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,求A处受噪音影响的时间。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“ 六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6 名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.
请根据上述统计图,解答下列问题:
(1)该校有多少个班级?并补全条形统计图;
(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?
(3)若该镇所有小学共有60 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B向C点运动,同时点Q在线段CA上由C点向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明;
(2)点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com