【题目】如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y= (k≠0,x>0)过点D.
(1)求双曲线的解析式;
(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.
【答案】
(1)
解:∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),
∴点D的坐标是(1,2),
∵双曲线y= (k≠0,x>0)过点D,
∴2= ,得k=2,
即双曲线的解析式是:y= .
(2)
解:∵直线AC交y轴于点E,
∴S△CDE=S△EDA+S△ADC= =3,
即△CDE的面积是3.
【解析】(1)根据在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D的坐标,又因为双曲线y= (k≠0,x>0)过点D,从而可以求得k的值,从而可以求得双曲线的解析式;
(2)由图可知三角形CDE的面积等于三角形EDA与三角形ADC的面积之和,从而可以解答本题.本题考查反比例函数与一次函数的交点问题、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.
科目:初中数学 来源: 题型:
【题目】学校医务室对九年级学生的用眼习惯所作的调查结果如图所示(不完整),图1和图2分别为学生用眼习惯调查的扇形统计图和条形统计图.
(1)请把表和图中的空缺部分补充完整;
(2)请提出一个保护视力的口号(15个字以内).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七中育才学校排球活动月即将开始,其中有一项为垫球比赛,体育组为了了解七年级学生的训练情况,随机抽取了七年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟的个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级,90~120范围内的记为C级,120~150范围内的记为B级,150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90°,请根据图中的信息解答下列问题:
(1)在扇形统计图中,A级所占百分比为 ;
(2)在这次测试中,一共抽取了 名学生,并补全频数分布直方图;
(3)在(2)中的基础上,在扇形统计图中,求D级对应的圆心角的度数;
(4)若A,B,C,D等级的平均成绩分别为165、135、105、75个,你能估算出学校七年级同学的平均水平吗?若能,请计算出来.(保留准确值)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长的数值与面积的数值相等,则点P是和谐点.
(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;
(2)若和谐点P(a,3)在直线y=﹣x+b(b为常数)上,求a,b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:
日期x | 1 | 2 | 3 | 4 |
水位y(米) | 20.0 | 20.5 | 21.0 | 21.5 |
(1)请建立该水库水位y(米)与日期x之间的函数模型,求出函数表达式;
(2)请用求出的函数表达式预测该水库今年4月6日的水位;
(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?请简要说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是长方体纸盒的平面展开图,设 AB=x cm,若 AD =4x cm,AN=3x cm.
(1)求长方形 DEFG 的周长与长方形 ABMN 的周长(用字母 x 进行表示);
(2)若长方形 DEFG 的周长比长方形 ABMN 的周长少 8cm,求 x 的值;
(3)在第(2)问的条件下,求原长方体纸盒的容积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.
(1)求出此时点A到岛礁C的距离;
(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC
(1)如图①.当∠COD在∠AOB的内部时
①若∠AOC=39°40′,求∠DOE的度数;
②若∠AOC=α,求∠DOE的度数(用含α的代数式表示),
(2)如图②,当∠COD在∠AOB的外部时,
①请直接写出∠AOC与∠DOE的度数之间的关系;
②在∠AOC内部有一条射线OF,满足∠AOC+2∠BOE=4∠AOF,写出∠AOF与∠DOE的度数之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了进行资源的再利用,学校准备针对库存的桌椅进行维修,现有甲、乙两木工组,甲每天修桌凳14 套,乙每天比甲多7套,甲单独修完这些桌凳比乙单独修完多用20天.学校每天付甲组80元修理费,付乙组120元修理费.
(1)请问学校库存多少套桌凳?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你选哪种方案,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com