精英家教网 > 初中数学 > 题目详情

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是

【答案】A′(5,2)
【解析】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′, ∴△ABO≌△A′B′O′,∠AOA′=90°,
∴AO=A′O.
作AC⊥y轴于C,A′C′⊥x轴于C′,
∴∠ACO=∠A′C′O=90°.
∵∠COC′=90°,
∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,
∴∠AOC=∠A′OC′.
在△ACO和△A′C′O中,

∴△ACO≌△A′C′O(AAS),
∴AC=A′C′,CO=C′O.
∵A(﹣2,5),
∴AC=2,CO=5,
∴A′C′=2,OC′=5,
∴A′(5,2).
所以答案是:A′(5,2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点AB为定点,定直线l//ABPl上一动点.点MN分别为PAPB的中点,对于下列各值:

线段MN的长;

②△PAB的周长;

③△PMN的面积;

直线MNAB之间的距离;

⑤∠APB的大小.

其中会随点P的移动而变化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2 , 且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;

(2)连接DE,若AD=2AB,求证:DEAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,FCD上一点,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度数为整数,则∠C的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线ABCD.

(1)如图1,直接写出∠BME、E、END的数量关系为   

(2)如图2,BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;

(3)如图3,ABM=MBE,CDN=NDE,直线MB、ND交于点F,则 =   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6张如图所示的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影部分表示,设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a、b满足(

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点 M 在第四象限,它到 x 轴的距离为 6,到 y 轴的距离为 3,则点 M的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一张四边形纸片ABCD∠A50°∠C150°.若将其按照图所示方式折叠后,恰好MD′∥ABND′∥BC,则∠D的度数为

查看答案和解析>>

同步练习册答案