【题目】如图,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
【答案】(1)根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠B=∠BCF,由E是BC的中点可得BE=CE,再结合对顶角相等可证得△ABE≌△FCE,问题得证;
(2)由AB=CD,AB=CF结合AD=2AB可证得AD=DF,再根据等腰三角形的性质即可作出判断.
【解析】试题分析:(1)由在ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.
试题解析:(1)∵四边形ABCD是平行四边形, ∴AB∥DF, ∴∠ABE=∠FCE, ∵E为BC中点, ∴BE=CE,
在△ABE与△FCE中,, ∴△ABE≌△FCE(ASA), ∴AB=FC;
(2)∵AD=2AB,AB=FC=CD, ∴AD=DF, ∵△ABE≌△FCE, ∴AE=EF, ∴DE⊥AF.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.
(1)求证:△BEF是等腰三角形;
(2)求证:BD=(BC+BF).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.
最喜爱的传统文化项目类型频数分布表
根据以上信息完成下列问题:
(1)直接写出频数分布表中a的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com