精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CEDF;AG=AD;③∠CHG=DAG;HG=AD.其中正确的有( )

A. B. C. D.

【答案】D

【解析】∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=90°,
∵点E、F、H分别是AB、BC、CD的中点,
∴△BCE≌△CDF,
∴∠ECB=∠CDF,
∵∠BCE+∠ECD=90°,
∴∠ECD+∠CDF=90°,
∴∠CGD=90°,
∴CE⊥DF,故①正确;
在Rt△CGD中,H是CD边的中点,
∴HG=CD=AD,故④正确;
连接AH,
同理可得:AH⊥DF,
∵HG=HD=CD,
∴DK=GK,
∴AH垂直平分DG,
∴AG=AD,故②正确;
∴∠DAG=2∠DAH,
同理:△ADH≌△DCF,
∴∠DAH=∠CDF,
∵GH=DH,
∴∠HDG=∠HGD,
∴∠GHC=∠HDG+∠HGD=2∠CDF,
∴∠CHG=∠DAG.故③正确.
故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

甲列车从A地开往B地,每小时行驶60千米,乙列车同时从B地开往A地,每小时行驶90千米.已知AB两地相距200km

1)经过多长时间两车相遇;

2)两车相遇的地方离A地多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买AB两种型号的污水处理设备共8台,具体情况如下表:


A

B

价格(万元/台)

12

10

月污水处理能力(吨/月)

200

160

经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.

1)该企业有几种购买方案?

2)哪种方案更省钱,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点上,以为半径的于点的垂直平分线交于点,交于点,连接

1)判断直线的位置关系,并说明理由;

2)若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.

设在同一家复印店一次复印文件的页数为x(x为非负整数)

(1)根据题意,填写下表:

一次复印页数()

5

10

20

30

甲复印店收费()

0.5

   

2

   

乙复印店收费()

0.6

   

2.4

   

(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1y2关于x的函数关系式;

(3)x70时,顾客在哪家复印店复印花费少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长为6ADBC边上的中线,MAD上的动点,EAC边上一点,若AE=2EM+CM的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个大棚组成的植物养殖区(如图1),要求两个大棚之间有间隔4米的路,设计方案如图2,已知每个大棚的周长为44米.

(1)求每个大棚的长和宽各是多少?

(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?

查看答案和解析>>

同步练习册答案