精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1 , 0),且﹣2<x1<﹣1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣ ;⑤2a<b+ ,正确的是(
A.①③
B.①②③
C.①②③⑤
D.①③④⑤

【答案】D
【解析】解:∵抛物线与x轴的交点为(1,0)和(x1 , 0),﹣2<x1<﹣1,与y轴交于正半轴, ∴a<0,
∵﹣2<x1<﹣1,
∴﹣ <﹣ <0,
∴b<0,b>a,故①正确,②错误;
∵当x=﹣1时,y>0,
∴a﹣b+1>0,
∴a>b﹣1故③正确;
∵由一元二次方程根与系数的关系知x1x2=
∴x1=
∵﹣2<x1<﹣1,
∴﹣2< <﹣1,
∴a<﹣ ,故④正确;
∵当x=﹣2时,y<0,
∴4a﹣2b+1<0,
∴2a<b+ ,故⑤正确,
综上所述,正确的结论有①③④⑤,
故选:D.
求得与y轴的交点坐标,根据与坐标轴的交点判断出a<0,根据与x轴的交点判定﹣ <﹣ <0,从而得出a、b的关系,把(﹣1,0),(﹣2,0)代入函数解析式求出a、b、c的关系式,然后对各小题分析判断即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】本题满分9小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发

的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路

以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距

离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象

1求s2与t之间的函数关系式;

2小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义一种新运算”:ab=2a﹣ab,比如1(﹣3)=2×1﹣1×(﹣3)=5

(1)求(﹣2)3的值;

(2)若(﹣3)x=(x+1)5,求x的值;

(3)若x1=2(1y),求代数式x+y+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.

(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;
(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坐标系中放置一菱形OABC,已知∠ABC=60°OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1B2B3,则B2014的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在河的两岸有A,B两个村庄,河宽为4千米,A、B两村庄的直线距离 AB=10千米,A、B两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥MN垂直于两岸,M点为靠近A村庄的河岸上一点,求AM+BN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲、乙两人均从400米的环形跑道的A处出发,各自以每秒6米和每秒8米的速度在跑道上跑步.

(1)若两人同时出发,背向而行,则经过   秒钟两人第一次相遇;若两人同时出发,同向而行,则经过   秒钟乙第一次追上甲.

(2)若两人同向而行,乙在甲出发10秒钟后去追甲,经过多少时间乙第二次追上甲.

(3)若让甲先跑10秒钟后乙开始跑,在乙用时不超过100的情况下,乙跑多少秒钟时,两人相距40米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CDAB于点D,BEAC于点E,CD、BE交于点O,且AO平分BAC,则图中的全等三角形共有(  )

A. 1对 B. 2对 C. 3对 D. 4对

查看答案和解析>>

同步练习册答案