【题目】如图,在中,,点,,分别在边,,上,且,,连结,,,
(1)求证:.
(2)判断的形状,并说明理由.
(3)若,当_______时,.请说明理由.
【答案】(1)见解析;(2)△ABC是等边三角形,理由见解析;(3),理由见解析
【解析】
(1)根据等边对等角可证∠B=∠C,然后利用SAS即可证出结论;
(2)根据全等三角形的性质可得∠BFD=∠CDE,从而得出∠B=∠1=60°,然后根据等边三角形的判定定理即可得出结论;
(3)作FM⊥BC于M,利用30°所对的直角边是斜边的一半即可求出BM,从而求出BD.
(1)证明:∵AB=AC,
∴∠B=∠C,
在△BDF和△CED中,
,
∴△BDF≌△CED(SAS);
(2)解:△ABC是等边三角形,理由如下:
由(1)得:△BDF≌△CED,
∴∠BFD=∠CDE,
∵∠CDF=∠B+∠BFD=∠1+∠CDE,
∴∠B=∠1=60°,
∵AB=AC,
∴△ABC是等边三角形
(3)解:当时,DF⊥BC,理由如下:
作FM⊥BC于M,如图所示:
由(2)得:△ABC是等边三角形,
∴∠B=∠C=60°,
∵FM⊥BC,
∴∠BFM=30°,
∴,
∴,
∵
∴M与D重合,
∴时,DF⊥BC
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图, 请根据图中提供的信息,完成下列问题:
(1)此次共调查了 人;
(2)求文学社团在扇形统计图中所占圆心角为 度;
(3)请将条形统计图补充完整;
(4)若该校有 1500 名学生,请估计喜欢体育类社团的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场销售某种冰箱,该种冰箱每台进价为2500元.已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.
(1)填表(不需化简):
每天的销售量/台 | 每台销售利润/元 | |
降价前 | 8 | 400 |
降价后 |
(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与y轴交于点B(0,3),与x轴交于点 A.
(1)求抛物线的解析式;
(2)M(m,0)为轴上一动点,过点M且垂直于轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与APM相似,求点M的坐标;
②点M在轴上自由运动,若三个点M、P、N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的 m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是____.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为_________.(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一张面积为630cm2的矩形张贴广告,它的上、下、左、右空白部分的宽度都是2cm.设印刷部分(矩形)的一边为xcm,印刷面积为ycm2.
(1)试用x的代数式表示y;
(2)若印刷面积为442cm2时,求张贴广告的长和宽.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM ∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com