精英家教网 > 初中数学 > 题目详情
如图,C是以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.过点O作线段AC的垂线段OE,垂足为点E,
(1)求证:AC平分∠BAD;
(2)若CD=4,AC=4,求垂线段OE的长.

【答案】分析:(1)连接OC.根据切线性质可证OC∥AD;然后根据等腰三角形性质、平行线的性质可证AC平分∠DAB;
(2)证明△AEO与△ADC相似,得比例线段求解.
解答:(1)证明:连接OC.
∵CD切⊙O于点C,
∴OC⊥CD.
又∵AD⊥CD,
∴OC∥AD.
∴∠OCA=∠DAC(两直线平行,内错角相等).
∵OC=OA(⊙O的半径),
∴∠OCA=∠OAC(等边对等角).
∴∠OAC=∠DAC(等量代换).
∴AC平分∠DAB.

(2)解:在Rt△ACD中,CD=4,AC=4,则由勾股定理得,
AD==8.
∵OE⊥AC,
∴AE=CE=AC=2
∵∠OAE=∠CAD,∠AEO=∠ADC,
∴△AEO∽△ADC,
=
∴OE===.即垂线段OE的长为
点评:本题考查了圆的切线性质,相似三角形的判定与性质及勾股定理等知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图是9×7的正方形点阵,其水平方向和竖直方向的两格点间的长度都为1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:
(1)请在图中画出以AB为边且面积为2的一个网格三角形;
(2)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形的面积为2的概率;
(3)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形为直角三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图是9×7的正方形点阵,其水平方向和竖直方向相邻的两格点间的长度都是1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:
(1)请在图中画出以AB为边且面积为3的一个格点三角形(记为△ABC);
(2)将你所画的三角形绕着点A沿逆时针方向旋转90°,画出旋转后的图形(记为
△AB′C′).

查看答案和解析>>

科目:初中数学 来源:2012年人教版初中数学九年级上25.2列举法求概率练习卷(解析版) 题型:解答题

如图是9×7的正方形点阵,其水平方向和竖起直方向的两格点间的长度都为1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:

(1)请在图中画出以AB为边且面积为2的一个网格三角形;

(2)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形的面积为2的概率;

(3)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形为直角三角形的概率.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图是9×7的正方形点阵,其水平方向和竖起直方向的两格点间的长度都为1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:
(1)请在图中画出以AB为边且面积为2的一个网格三角形;
(2)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形的面积为2的概率;
(3)任取该网格中能与A、B构成三角形的一点M,求以A、B、M为顶点的三角形为直角三角形的概率.

查看答案和解析>>

科目:初中数学 来源:2010年内蒙古呼和浩特市中考数学预测试卷(二)(解析版) 题型:解答题

如图是9×7的矩形点阵,其水平方向和竖直方向相邻的两格点间的长度都是1个单位,以这些点为顶点的三角形称为格点三角形.请通过画图分析、探究回答下列问题:
(1)请在图中画出以AB为边且面积为3的一个格点三角形(记为△ABC);
(2)将你所画的三角形绕着点A沿逆时针方向旋转90°,画出旋转后的图形(记为△AB′C′).

查看答案和解析>>

同步练习册答案