精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点D,E,求AB,AD的长.
分析:首先根据勾股定理求得斜边的长.再根据直角三角形斜边上的高等于两直角边相乘除以斜边,求得斜边上的高,即是弦的弦心距.再根据勾股定理求得弦的一半,即可计算AD的长.
解答:精英家教网解:如右图所示,作CP⊥AB于P.
在Rt△ABC中,由勾股定理,得
AB=
AC2+BC2
=
32+42
=5.
由S△ABC=
1
2
AB•CP=
1
2
AC•BC,
5
2
CP=
1
2
×3×4,所以CP=
12
5

在Rt△ACP中,由勾股定理,得:
AP=
AC2-CP2
=
32-(
12
5
)
2
=
9
5

因为CP⊥AD,所以AP=PD=
1
2
AD,
所以AD=2AP=2×
9
5
=
18
5
点评:在圆中,作弦的弦心距是一条常见的辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案