精英家教网 > 初中数学 > 题目详情

【题目】如图所示,OEOD分别平分∠AOC和∠BOC.

(1)如果∠AOB=900BOC=400,求∠DOE的度数;

(2)如果∠AOB=αBOC=β αβ均为锐角α>β,其他条件不变,求∠DOE

(3)(1)(2)的结果中,你发现了什么规律.

【答案】(1)45°;(2)45°;(3)∠DOE=AOB

【解析】试题分析: 根据角平分线的定义,求得的度数,结合图形,知

的计算方法一样;

综合的结论,发现规律:

试题解析(1)

又∵OEOD分别平分∠AOC和∠BOC

(2)

∴∠AOC=AOB+BOC=α+β.

又∵OEOD分别平分∠AOC和∠BOC

(3)DOE的大小与∠BOC的大小无关,即

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.

(1)求点A,B的坐标.
(2)求抛物线C1的表达式及顶点坐标;
(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各题计算正确的是 ( )

A. (ab﹣1)·(﹣4ab2)=﹣4a2b3﹣4ab2 B. (3x2+xyy2)·3x2=9x4+3x3yy2

C. (﹣3a)·(a2﹣2a+1)=﹣3a3+6a2 D. (﹣2x)·(3x2﹣4x﹣2)=﹣6x3+8x2+4x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):学生孝敬父母情况统计表:

选项

频数

频率

A

m

0.15

B

60

p

C

n

0.4

D

48

0.2

根据以上信息解答下列问题:

(1)这次被调查的学生有多少人?
(2)求表中m,n,p的值,并补全条形统计图.
(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.

(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在⊙O的直径AB上,AB=6,AC=1.点P为⊙O上的任意一点,当∠OPC取最大值时,则△OCP的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.
(1)学校采用的调查方式是;学校共选取了名学生;
(2)补全统计图中的数据:条形统计图中羽毛球人、乒乓球人、其他人、扇形统计图中其他%;
(3)该校共有1100名学生,请估计喜欢“篮球”的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x﹣交x轴于点A,交y轴于点C,直线y=x﹣5交x轴于点B,在平面内有一点E,其坐标为(4,),连接CB,点K是线段CB的中点,另有两点M,N,其坐标分别为(a,0),(a+1,0).将K点先向左平移 个单位,再向上平移个单位得K′,当以K′,E,M,N四点为顶点的四边形周长最短时,a的值为_____

查看答案和解析>>

同步练习册答案