精英家教网 > 初中数学 > 题目详情
5.在△ABC中,∠BAC=45°,AD⊥BC于D,分别以AB为边作△ABE≌△ABD,以AC为边作△ACF≌△ACD,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明.
(2)若BD=1,CD=2,试求四边形AEMF的面积.

分析 (1)根据全等三角形的性质得出AE=AD,AF=AD,∠EBA=∠BAD,∠FAC=∠CAD,∠E=∠ADB=90°,∠F=∠ADC=90°,求出AE=AF,∠EAF=90°,根据正方形的判定得出即可;
(2)根据全等得出BD=BE=1,DC=CF=2,设正方形AEMF的边长为x,则∠EMF=90°,EM=FM=x,BM=x-1,CM=x-2,根据勾股定理得出方程(1+2)2=(x-1)2+(x-2)2,求出方程的解即可.

解答 (1)四边形AEMF是正方形,
证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∵△ABE≌△ABD,△ACF≌△ACD,
∴AE=AD,AF=AD,∠EBA=∠BAD,∠FAC=∠CAD,∠E=∠ADB=90°,∠F=∠ADC=90°,
∴AE=AF,
∵∠BAC=∠BAD+∠CAD=45°,
∴∠EAF=45°+45°=90°,
即∠E=∠F=∠EAF=90°,AE=AF,
∴四边形AEMF是正方形;

(2)解:∵△ABE≌△ABD,△ACF≌△ACD,BD=1,CD=2,
∴BD=BE=1,DC=CF=2,
设正方形AEMF的边长为x,
则∠EMF=90°,EM=FM=x,
所以BM=x-1,CM=x-2,
在RtBMC中,由勾股定理得:BC2=BM2+CM2
(1+2)2=(x-1)2+(x-2)2
解得:x=$\frac{3+\sqrt{17}}{2}$(负数舍去),
所以四边形AEMF的面积是($\frac{3+\sqrt{17}}{2}$)2=$\frac{13+3\sqrt{17}}{2}$.

点评 本题考查了正方形的判定,勾股定理,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,点A,D是网格中的两点,现在将点A进行两次平移,第一次平移后的对应点为B第二次平移后的对应点为C,顺次连接ABCD四点,恰好是一个等腰梯形,请你在网格中画出图形,使这个等腰梯形的面积为12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知AE=CF,AD∥BC,AD=BC.求证:
(1)△ADF≌△CBE.
(2)DF∥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE=6,∠ACD=∠B,△ABC的面积为8.
(1)求证:△ABC≌△CDE;
(2)CE边上的高有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,等腰Rt△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,DM⊥AB交BA的延长线于M,连接DA,
(1)求$\frac{AB+BC}{BM}$的值;
(2)求$\frac{BC-BA}{AM}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状围成一个正方形.
(1)图②中的阴影部分是个正方形(填长方形或正方形),它的边长为m-n;
(2)观察图②阴影部分的面积,请你写出三个代数式(m+n)2、(m-n)2、mn之间的等量关系是(m+n)2=(m-n)2+4mn.
(3)实际上有许多代数恒等式可以用图形的面积来表示.
如图③,它表示了(2m+n)(m+n)=2m2+3mn+n2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在矩形ABCD中,AD=$\sqrt{2}$AB,AE平分∠BAD,DF⊥AE于F,BF交DE、CD于O、H,下列结论:①∠DEA=∠DEC;②BF=FH;③OE=OD;④BC-CH=2EF;⑤AB=HF,其中正确结论的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:x=$\sqrt{3}+1$,y=$\sqrt{3}-1$,求x2-xy+y2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.分解因式:x4-3x3-28x2=x2(x-7)(x+4).

查看答案和解析>>

同步练习册答案