【题目】阅读下面材料:
上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范围.
小捷的思路是:原不等式等价于x2﹣2x﹣1>a,设函数y1=x2﹣2x﹣1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.
请结合小捷的思路回答:
对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,则a的取值范围是 .
参考小捷思考问题的方法,解决问题:
关于x的方程x﹣4=在0<a<4范围内有两个解,求a的取值范围.
【答案】(1)a<﹣2;(2)﹣1<a<3
【解析】试题分析:请结合小捷的思路回答:直接根据函数的顶点坐标可得出a的取值范围;设y1=x2-4x+3,y2=a,记函数y1在0<x<4内的图象为G,于是原问题转化为y2=a与G有两个交点时a的取值范围,结合图象可得出结论;
试题解析:
解:请结合小捷的思路回答:
由函数图象可知,a<﹣2时,关于x的不等式x2﹣2x﹣1﹣a>0恒成立.
故答案为:a<﹣2.
解决问题:将原方程转化为x2﹣4x+3=a,
设y1=x2﹣4x+3,y2=a,记函数y1在0<x<4内的图象为G,于是原问题转化为y2=a与G有两个交点时a的取值范围,结合图象可知,a的取值范围是:﹣1<a<3.
科目:初中数学 来源: 题型:
【题目】“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1 520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).
(1)每本文学名著元,每本动漫书元;
(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总本数不低于72本,总费用不超过2 000元,请求出所有符合条件的购书方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.
(1)求证:∠DAC=∠ACO+∠ABO;
(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;
(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( )
A.方程7x+ =0的解,就是直线y=7x+ 与x轴交点的横坐标
B.方程2x+3=4x+7的解,就是直线y=2x+3与直线y=4x+7交点的横坐标
C.方程7x+ =0的解,就是一次函数y=7x+ 当函数值为0时自变量的值
D.方程7x+ =0的解,就是直线y=7x+ 与y轴交点的纵坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于点D,PC切半圆O于点C,连接BC,OC.
(1)求证:△OAP≌△OCP;
(2)若半圆O的半径等于2,填空:
①当AP= 时,四边形OAPC是正方形;
②当AP= 时,四边形BODC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP∶BC=2∶3.其中能推出△ABP∽△ECP的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳蓬的宽度.如图,由于无法直接测量,小凯便在楼前地面上选择了一条直线,通过在直线上选点观测,发现当他位于点时,他的视线从点通过露台点正好落在遮阳蓬点处;当他位于点时,视线从点通过点正好落在遮阳蓬点处,这样观测到的两个点、间的距离即为遮阳蓬的宽.已知,点在上, 、、、均垂直于, ,露台的宽,测得米, 米, 米.请你根据以上信息,求出遮阳蓬的宽是多少米?(结果精确到米).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com