精英家教网 > 初中数学 > 题目详情
16.因式分解:
(1)16-4x2       
(2)9a2(x-y)-4(x-y)     
(3)(x2+4)2-16x2

分析 (1)原式提取公因式,再利用平方差公式分解即可;
(2)原式提取公因式,再利用平方差公式分解即可;
(3)原式利用平方差公式及完全平方公式分解即可.

解答 解:(1)原式=4(4-x2)=4(2+x)(2-x);
(2)原式=(x-y)(9a2-4)=(x-y)(3a+2)(3a-2);
(3)原式=(x2+4+4x)(x2+4-4x)=(x+2)2(x-2)2

点评 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图所示,台风过后,旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆在离地面6米处折断,请你求出旗杆原来的高度?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.设直线kx+(k+1)y-1=0与坐标轴所围成的直角三角形的面积为Sk,则S1+S2+…+S2017=$\frac{2017}{4036}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在平行四边形ABCD中,对角线AC,BD交于点O,AC=10,BD=8,则AD的取值范围是(  )
A.2<AD<18B.1≤AD≤9C.2≤AD≤8D.1<AD<9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
(1)△ABC的面积为7;
(2)请画出平移后的△DEF;
(3)利用格点画出△DEF的高FG(点G为垂足);
(4)若连接AD、CF,则这两条线段之间的关系是AD与CF平行且相等.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,直线y=x+2与双曲线y=$\frac{k}{x}$相交于点A,点A的纵坐标为3,则k的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.关于x的方程(a-6)x2-8x+6=0有实数根,下列整数不满足a的取值的是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列式子正确的是(  )
A.±$\sqrt{9}$=±3B.$\root{3}{-8}$=2C.$\sqrt{{(-3)}^{2}}$=-3D.±$\sqrt{4}$=2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.菱形的一个内角为120°,较短的对角线长为10cm,则这个菱形的面积是50$\sqrt{3}$cm2

查看答案和解析>>

同步练习册答案