精英家教网 > 初中数学 > 题目详情
如图,点O在直线AB上,0F平分∠BOC,OE平分∠AOC,CF⊥OF于点F,求证:FC∥0E.
分析:利用角平分线的性质得出∠EOC+∠COF=90°,进而得出∠CFO=∠EOF=90°,即可得出FC∥0E.
解答:证明:∵0F平分∠BOC,OE平分∠AOC,
∴∠AOE=∠EOC,∠COF=∠FOB,
∴∠EOC+∠COF=90°,
∵CF⊥OF于点F,
∴∠CFO=∠EOF=90°,
∴FC∥0E.
点评:此题主要考查了平行线的判定以及角平分线的性质,根据已知得出∠CFO=∠EOF=90°是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数和互余两角的对数分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,点O在直线AB上,射线CO与AB交于点O,OE、OD分别是∠AOC、∠BOC的角平分线,求∠DOE的度数,并写出∠COD的余角.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则∠DOB的大小为
54°
54°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.
(1)求∠DOE的度数;
(2)如果∠AOD=51°12′,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O在直线AB上,∠AOD=22°30′,∠BOC=45°,OE平分∠BOC,则∠EOC的补角是(  )

查看答案和解析>>

同步练习册答案