精英家教网 > 初中数学 > 题目详情

【题目】某宾馆有 50 个房间供游客居住,当每个房间的定价为每天 160 元时,房间会全部住满,当每个房间每天的定价每增加 10 元时,就会有一个房间空闲,如果游客居住房间, 宾馆需对每个房间每天支出 20 元的各种费用.设每个房间的定价为 x 元时,相应的住房数为 y 间.

1)求 y x 的函数关系式;

2)定价为多少时宾馆当天利润 w 最大?并求出一天的最大利润;

3)若老板决定每住进去一间房就捐出 a 元(a≤30)给当地福利院,同时要保证房间定价 x 160 元至 350 元之间波动时(包括两端点),利润 w x 的增大而增大,求 a 的取值范围

【答案】1;(2)定价为每间340元时,宾馆当天的利润最大为10240元;(3

【解析】

1)根据每天游客居住的房间数量=50-减少的房间数,即可解决问题;

2)构造二次函数,利用二次函数的性质解决问题;

3)构造二次函数,利用函数的增减性解决问题.

解:(1

整理得:

2

整理可得:

w有最大值10240

即定价为每间340元时,宾馆当天的利润最大为10240元;

3

整理得:

wx的增大而增大,

解得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:

已知yx的函数,下表是yx的几组对应值.

x

5

4

3

2

0

1

2

3

4

5

y

1.969

1.938

1.875

1.75

1

0

2

1.5

0

2.5

小孙同学根据学习函数的经验,利用上述表格反映出的yx之间的变化规律,对该函数的图象与性质进行了探究.

下面是小孙同学的探究过程,请补充完整;

1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:

2)根据画出的函数图象回答:

x=﹣1时,对应的函数值y的为   

若函数值y0,则x的取值范围是   

写出该函数的一条性质(不能与前面已有的重复):   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小刚家,菜地,稻田在同一条直线上.小刚从家去菜地浇水,又去稻田除草,然后回家.如图反映了这个过程中,小刚离家的距离y与时间x之间的对应关系.如果菜地和稻田的距离为akm,小刚在稻田除草比在菜地浇水多用了bmin,则ab的值分别为(  )

A.18B.0.512C.112D.0.58

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+cm0有两个不相等的实数根,下列结论:其中,正确的个数有(  )

b24ac0;②ab+c0;③abc0;④m>﹣2

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是2101.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为 0的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个阳光明媚的上午,小明和小兰相约从鲁能巴蜀中学沿相同的路线去龙头寺公园写生,小明出发5分钟后小兰才出发,此时小明发现忘记带颜料,立即按原速原路回学校拿颜料,小明拿到颜料后,以比原速提髙20%的速度赶去公园,结果还是比小兰晚2分钟到公园(小明拿颜料的时间忽略不计).在整个过程中,小兰保持匀速运动,小明提速前后也分别保持匀速运动,如图所示是小明与小兰之间的距离(米)与小明出发的时间(分钟)之间的函数图象,则学校到公园的距离为_______米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形中,过点作于点,过上一点于点,交于点,连接于点,连接

1)若,求的长;

2)若,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示,在平面直角坐标系中,二次函数)交轴于,在轴上有一点,连接.

1)求二次函数的表达式;

2)点是第二象限内的点抛物线上一动点

①求面积最大值并写出此时点的坐标;

②若,求此时点坐标;

3)连接,点是线段上的动点.连接,把线段绕着点顺时针旋转,点是点的对应点.当动点从点运动到点,则动点所经过的路径长等于______(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB90°,点AC的坐标分别为A(﹣30),C10),tanBAC

1)写出点B的坐标;

2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;

3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.

查看答案和解析>>

同步练习册答案