精英家教网 > 初中数学 > 题目详情
(1998•黄冈)如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.
分析:可由Rt△ABM≌Rt△DAN,AM=DN同理可得AN=NP,所以MN=PN,进而可得其为正方形.
解答:证明:l1∥l2,BM⊥l1,DN⊥l2
∴∠QMN=∠P=∠N=90°,
∴四边形PQMN为矩形,
∵AB=AD,∠M=∠N=90°
∠ADN+∠NAD=90°,∠NAD+∠BAM=90°,
∴∠ADN=∠BAM,
又∵AD=BA,
∴Rt△ABM≌Rt△DAN(HL),
∴AM=DN
同理AN=DP,
∴AM+AN=DN+DP,即MN=PN.
∴四边形PQMN是正方形.
点评:本题考查了矩形的判定和性质、全等三角形的判定和性质以及正方形的判定,解题的关键是熟练掌握各种几何图形的性质和判定方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1998•黄冈)如图,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于C、D,交AB于E,AF为⊙O的直径,下列结论:①∠ABP=∠AOP;②
BC
=
DF
;③PC•PD=PE•PO.其中正确结论的个数有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•黄冈)如图,直角坐标系中,O为坐标原点,A点坐标为(-3,0),B点坐标为(12,0),以AB为直径作⊙P与y轴的负半轴交于点C.抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M点.
(1)求此抛物线的解析式;
(2)设点D是抛物线与⊙P的第四个交点(除A、B、C三点以外),求直线MD的解析式;
(3)判定(2)中的直线MD与⊙P的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•黄冈)如图,⊙O是△ABC的外接圆,BC是直径,以顶点A为圆心,AB长为半径的圆交⊙O于F点,交BC于G点(AB<OB).AD⊥BC于D,AD与BF交于E点,OF交⊙A于H点.求证:
(1)△ABE是等腰三角形;
(2)
FH
2AE
=
BF
BC

查看答案和解析>>

科目:初中数学 来源:2009年福建省三明市大田二中自主招生数学模拟试卷(3)(解析版) 题型:填空题

(1998•黄冈)如图,⊙O是△ABC的外接圆,AD是BC边上的高,已知BD=8,CD=3,AD=6,则直径AM的长为   

查看答案和解析>>

同步练习册答案