精英家教网 > 初中数学 > 题目详情

如图,已知二次函数数学公式的图象过点A(-4,3),B(4,4).
(1)求二次函数的解析式:
(2)求证:△ACB是直角三角形;
(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

解:(1)由题意得,函数图象经过点A(-4,3),B(4,4),
故可得:
解得:
故二次函数关系式为:y=(x+2)(13x-20).

(2)由(1)所求函数关系式可得点C坐标为(-2,0),点D坐标为(,0),
又∵点A(-4,3),B(4,4),
∴AB==,AC==,BC==
∵满足AB2=AC2+BC2
∴△ACB是直角三角形.

(3)存在点P的坐标,点P的坐标为(-)或(-).
设点P坐标为(x,(x+2)(13x-20)),则PH=(x+2)(13x-20),HD=-x+
①若△DHP∽△BCA,则=,即=
解得:x=-或x=(因为点P在第二象限,故舍去);
代入可得PH=,即P1坐标为(-);
②若△PHD∽△BCA,则=,即=
解得:x=-或x=(因为点P在第二象限,故舍去).
代入可得PH=,即P2坐标为:(-).
综上所述,满足条件的点P有两个,即P1(-)、P2(-).
分析:(1)将点A及点B的坐标代入函数解析式,得出a、b的值,继而可得出函数解析式;
(2)根据二次函数解析式,求出点C的坐标,然后分别求出AC、AB、BC的长度,利用勾股定理的逆定理证明即可;
(3)分两种情况进行讨论,①△DHP∽△BCA,②△PHD∽△BCA,然后分别利用相似三角形对应边成比例的性质求出点P的坐标.
点评:此题属于二次函数综合题目,涉及了相似三角形的判定与性质、待定系数法求二次函数解析式,同时还让学生探究存在性问题,本题的第三问计算量比较大,同学们要注意细心求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上精英家教网的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.
(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(-2,0)和点C(0,-8).
(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为
6
7
,0)
6
7
,0)

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•常德)如图,已知二次函数的图象过点A(0,-3),B(
3
3
),对称轴为直线x=-
1
2
,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象与x轴交于A(2,0)、B(6,0)两点,与y轴交于点D(0,4).
(1)求该二次函数的表达式;
(2)写出该抛物线的顶点C的坐标;
(3)求四边形ACBD的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象(0≤x≤3.4),关于该函数在所给自变量的取值范围内,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案