【题目】在中,为直径,弦交于点、,连接、,.
(1)如图①,求的度数;
(2)如图②,弦交于点.在上取点,连接、和,使,求证:;
(3)如图③,在(2)的条件下,,的直径为,连接,,求的长.
科目:初中数学 来源: 题型:
【题目】数学学习小组“陆月辉煌”最近正在进行几何图形组合问题的研究.认真研读以下四个片段,并回答问题.
(片断一)小陆说:将一块足够大的等腰直角三角板置于一个正方形中,直角顶点与对角线交点O重合,在转动三角板的过程中我发现某些线段之间存在确定的数量关系.
如图(1),若三角板两条直角边的外沿分别交正方形的边AB、BC于点M、N,则①OM+ON=MB+NB;②.
请你判断他的猜想是否正确?并证明你认为正确的猜想.
(片断二)小月说:将三角板中一个45°角的顶点和正方形的一个顶点重合放置,使得这个角的两条边与正方形的一组邻边有交点.
如图(2),若以A为顶点的45°角的两边分别交正方形的边BC、CD于点M、N,交对角线BD于点E、F.我发现:BE2+DE2=2AE2,只要准确旋转图(2)中的一个三角形就能证明这个结论.
请你写出小月所说的具体的旋转方式:______________________.
(片断三)小辉说:将三角板的一个45°角放置在正方形的外部,同时角的两边恰好经过正方形两个相邻的顶点.
如图(3),设顶点为E的45°角位于正方形的边AD上方,这个角的两边分别经过点B、C,连接EA,ED.那么线段EB、EC、ED也存在确定的数量关系:(EB+ED)2=2EC2.
请你证明这个结论.
(片断四)小煌说:在图(2)中,作一个过点A、E、F的圆,交正方形的边AB、AD于点G、H,如图(4)所示.你知道线段DH、HG、GB三者之间的关系吗?请直接写出结论:________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将直角三角板的直角边放在半圆的直径上,直角顶点与直径端点重合,已知,且的直角边与半圆的半径长均为2.现将直角三角板沿直径的方向向右平移,将三角板平移后的三角形记为.
(1)如图,当平移到斜边与半圆相切时,试求的长度(结果保留);
(2)设平移距离为,在直角三角形平移过程中,折线(包括端点)与半圆弧共有3个交点时,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,中,是边上一点,是的中点,过点作的平行线交的延长线于,且,连接.
(1)求证:是的中点;
(2)若,试判断四边形的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象所示,下列结论中:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2,其中正确的结论分别是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在一次函数y=x位于第一象限的图象上运动,点B在x轴正半轴上运动,在AB右侧以它为边作矩形ABCD,且AB=2,AD=1,则OD的最大值是( )
A.B.+2C.+2D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com