分析 因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.
解答 解:分三种情况计算:
(1)当AE=AF=3时,如图:![]()
∴S△AEF=$\frac{1}{2}$AE•AF=$\frac{1}{2}$×3×3=$\frac{9}{2}$;
(2)当AE=EF=3时,如图:![]()
则BE=4-3=1,
BF=$\sqrt{E{F}^{2}-B{E}^{2}}$=$\sqrt{{3}^{2}-{1}^{2}}$=2$\sqrt{2}$,
∴S△AEF=$\frac{1}{2}$•AE•BF=$\frac{1}{2}$×3×2$\sqrt{2}$=3$\sqrt{2}$;
(3)当AE=EF=3时,如图:![]()
则DE=5-3=2,
DF=$\sqrt{E{F}^{2}-D{E}^{2}}$=$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
∴S△AEF=$\frac{1}{2}$AE•DF=$\frac{1}{2}×$3×$\sqrt{5}$=$\frac{3}{2}$$\sqrt{5}$,
故答案为:$\frac{9}{2}$或3$\sqrt{2}$或$\frac{3}{2}$$\sqrt{5}$.
点评 本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0.55 | B. | 0.8 | C. | 0.6 | D. | 0.75 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com