精英家教网 > 初中数学 > 题目详情
已知点A(1,c)和点B(3,d)是直线y=k1x+b与双曲线(k2>0)的交点.
(1)过点A作AM⊥x轴,垂足为M,连接BM.若AM=BM,求点B的坐标.
(2)若点P在线段AB上,过点P作PE⊥x轴,垂足为E,并交双曲线(k2>0)于点N.当取最大值时,有PN=,求此时双曲线的解析式.
【答案】分析:(1)过B作BN⊥x轴,由点A(1,c)和点B(3,d)都在双曲线(k2>0)上,得到即c=3d,则A点坐标为(1,3d),根据勾股定理计算出MB=,然后利用AM=BM得到(3d)2=22+d2,求出d的值,即可确定B点坐标;
(2)由B(3,d)可得到反比例函数的解析式为y=,然后利用待定系数法求出直线AB的解析式为y=-dx+4d,则可设P(t,-dt+4d),则N(t,),表示出PN=-dt+4d-,NE=,再计算==-t2+t-1,配方得-(t-2)2+,由于取最大值,所以t=2,此时PN=-dt+4d-=,解方程得到d的值,即可确定双曲线的解析式.
解答:解:(1)如图,过B作BN⊥x轴,
∵点A(1,c)和点B(3,d)都在双曲线(k2>0)上,
∴1×c=3×d,即c=3d,
∴A点坐标为(1,3d),
∴AM=3d,
∵MN=3-1=2,BN=d,
∴MB=
而AM=BM,
∴(3d)2=22+d2
∴d=
∴B点坐标为(3,);

(2)如图,把B(3,d)代入y=得k2=3d,
∴反比例函数的解析式为y=
把A(1,3d)、B(3,d)代入y=k1x+b得,,解得
∴直线AB的解析式为y=-dx+4d,
设P(t,-dt+4d),则N(t,),
∴PN=-dt+4d-,NE=
==-t2+t-1=-(t-2)2+
取最大值时,t=2,
此时PN=-dt+4d-=
∴-2d+4d-=
∴d=1,
∴反比例函数的解析式为y=
点评:本题考查了反比例函数综合题:点在函数图象上,则点的横纵坐标满足其解析式;运用待定系数法求函数的解析式;利用配方法讨论确定最值问题以及勾股定理计算有关线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点A(0,2)和点B(0,-2),点P在函数y=-
1x
的图象上,如果△PAB的面积是6,则P点的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A(2010,a)和点B(2011,b)都在直线y=-
19992000
x+3的图象上,那么a与b的大小关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.
(1)求证:△BMD为等腰直角三角形.
(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.
(3)将△ADE绕点A逆时针旋转135°,如图3中的“△BMD为等腰直角三角形”成立吗?(不用说明理由).
(4)我们是否可以猜想,将△ADE绕点A任意旋转一定的角度,如图4中的“△BMD为等腰直角三角形”均成立?(不用说明理由).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A(4,3)和点B是同一平面直角坐标系内两点,且它们关于直线x轴对称,则点B的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,平面直角坐标系中,已知点A(1,3)和点B(6,2),在x轴上找到一点P,使△ABP的周长最小;并写出点P的坐标.
(2)图2图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象回答下列问题:
①张强从家到体育场用了
15
15
分钟;
②体育场离文具店
1
1
千米;
③张强在文具店停留了
20
20
分钟;
④张强从文具店回家的平均速度是
3
70
3
70
千米/分.

查看答案和解析>>

同步练习册答案