精英家教网 > 初中数学 > 题目详情

【题目】如图1,一次函数y=kx+b的图象与反比例函数y= 的图象交于C2n)、D两点,与x轴,y轴分别交于AB02)两点,如果△AOC的面积为6.

1)求点A的坐标

2)求一次函数和反比例函数的解析式;

3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和△COE的面积。

【答案】(1)A-4,0);(2y=;(3E6,1),8.

【解析】

1)由B02)得OB=2,根据 ,求出OA的值,即可得点A的坐标;

2)根据点AB的坐标用待定系数法即可求出一次函数的解析式,将点C2n)代入一次函数的解析式求出n,代入可得反比例函数的解析式;

3)将两个函数的解析式联立组成方程组,解方程组求出点D的坐标.根据点D与点E关于原点对称可得点E的坐标,OD=OE,根据,即可求得COE的面积.

解:(1)∵B02 OB=2

OA=4 A-4,0

2)∵一次函数y=kx+b的图象经过点A-4,0),B(0,2)

,解得 ∴一次函数为y=.

把点C2n)代入y=n= =3

C(2,3)

C(2,3)代入y= m=6 ∴反比例函数的解析式为.

(3)解方程组,

D-6-1

∵点D与点E关于原点对称

E6,1),OD=OE

.

故答案为:(1A-4,0);(2 ;(3E6,1),8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,BAC=45°,AB=8要使满足条件的ABC惟一确定,那么BC的长度x的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+bx+c与x轴交于A、B两点,B点的坐标为3,0,经过A点的直线交抛物线于点D 2, 3.

1求抛物线的解析式和直线AD的解析式;

2过x轴上的点E a,0 作直线EFAD,交抛物线于点F,是否存在实数a使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等腰直角三角形,,以为边向外作等边三角形,连接于点,交于点,过点于点.下列结论:①;②;③;④.则正确的结论是_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB=90°AC=2BC, 将△ABC绕点O按逆时针方向旋转90°得到△DEF,点A,B,C的对应点分别是点D,E,F.请仅用无刻度直尺分别在下面图中按要求画出相应的点(保留画图痕迹).

1).如图1,当点OAC的中点时,画出BC的中点N

(2).如图2 旋转后点E恰好落在点C,F落在AC,NBC的中点,画出旋转中心O.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;(a+c)2<b2③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是(  )

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABC,∠BAC90°,点DBC中点,ADACBC4,过AD两点作⊙O,交AB于点E

1)求弦AD的长;

2)如图1,当圆心OAB上且点M是⊙O上一动点,连接DMAB于点N,求当ON等于多少时,三点DEM组成的三角形是等腰三角形?

3)如图2,当圆心O不在AB上且动圆⊙ODB相交于点Q时,过DDHAB(垂足为H)并交⊙O于点P,问:当⊙O变动时DPDQ的值变不变?若不变,请求出其值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在RtABC中,ACB=90°,BE平分ABC,D是边AB上一点,以BD为直径的O经过点E,且交BC于点F.

(1)求证:AC是O的切线;

(2)若BF=6,O的半径为5,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?

查看答案和解析>>

同步练习册答案