如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
求证:(1)CF=EB;
(2)AB=AC+CF.
![]()
【考点】全等三角形的判定与性质;角平分线的性质.
【专题】证明题.
【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EBD,得CF=EB;
(2)利用角平分线性质证明∴△ADC≌△ADE,AC=AE,再将线段AC进行转化.
【解答】解:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△DCF和Rt△DEB中,
,
∴Rt△CDF≌Rt△EBD(HL),
∴CF=EB;
(2)在△ADC与△ADE中,
,
∴△ADC≌△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+CF.
【点评】本题主要考查平分线的性质,全等三角形的性质与判定,由已知能够注意到点D到AB的距离=点D到AC的距离,即CD=DE,是解答本题的关键.
科目:初中数学 来源: 题型:
如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF=S△ABC;④BE+CF=EF.上述结论中始终正确的有( )
![]()
A.4个 B.3个 C.2个 D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为( )
![]()
A.48° B.36° C.30° D.24°
查看答案和解析>>
科目:初中数学 来源: 题型:
如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
在创建国家卫生城市环境综合整治行动中,某小区计划对楼体外墙进行粉刷,现有甲、乙两家装饰公司有意承接此项工程.已知甲公司的费用y(元)与粉刷面积x(x≥100)(m2)的关系如表:
| 粉刷面积x(m2) | 100 | 200 | 300 | 400 | … |
| 费用y(元) | 2000 | 4000 | 6000 | 8000 | … |
乙公司表示:若该小区先支付3000元的基本承包费,则可按15元/m2的价格收费.请根据以上信息,解答下列问题:
(1)若甲公司收取的费用y(元)与粉刷面积x(m2)满足我们学过某一函数关系,试确定这一函数关系式;
(2)试确定乙公司收取的费用y(元)与粉刷面积x(x≥100)(m2)满足的函数关系式;
(3)在给出的平面直角坐标系内画出(1)(2)中的函数图象,并确定若该小区粉刷面积约为800m2,则选择哪家装饰公司进行施工更合算?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com