精英家教网 > 初中数学 > 题目详情
19.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于点E、F,作BH⊥AF于点H,交AC于点G,连接GE、GF.
(1)求证:△OAE≌△OBG;
(2)求证:四边形BFGE是菱形.

分析 (1)由正方形的性质得出OA=OB,∠AOE=∠BOG=90°,再由角的互余关系证出∠OAE=∠OBG,由ASA即可证明△OAE≌△OBG;
(2)先证明△AHG≌△AHB,得出GH=BH,由线段垂直平分线的性质得出EG=EB,FG=FB;再证出∠BEF=∠BFE,得出EB=FB,因此EG=EB=FB=FG,即可得出结论.

解答 (1)证明:∵四边形ABCD是正方形,
∴OA=OB,∠AOE=∠BOG=90°.
∵BH⊥AF,
∴∠AHG=∠AHB=90°,
∴∠GAH+∠AGH=90°=∠OBG+∠AGH,
∴∠GAH=∠OBG,
即∠OAE=∠OBG.
∴在△OAE与△OBG中,$\left\{\begin{array}{l}{∠OAE=∠OBG}&{\;}\\{OA=OB}&{\;}\\{∠AOE=∠BOG}&{\;}\end{array}\right.$,
∴△OAE≌△OBG(ASA);
(2)在△AHG与△AHB中,$\left\{\begin{array}{l}{∠GAH=∠BAH}&{\;}\\{AH=AH}&{\;}\\{∠AHG=∠AHB}&{\;}\end{array}\right.$,
∴△AHG≌△AHB(ASA),
∴GH=BH,
∴AF是线段BG的垂直平分线,
∴EG=EB,FG=FB.
∵∠BEF=∠BAE+∠ABE=67.5°,∠BFE=90°-∠BAF=67.5°,
∴∠BEF=∠BFE,
∴EB=FB,
∴EG=EB=FB=FG,
∴四边形BFGE是菱形;

点评 本题考查了正方形的性质、全等三角形的判定与性质、线段垂直平分线的性质、菱形的判定;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.如果A(1-a,b+1)在第三象限,那么点B(a,b)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.因式分解
(1)a3-4ab2                        
(2)3x(a-b)-6y(b-a)
(3)(x2+y22-4x2y2              
(4)81x4-72x2y2+16y4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.①如图1,是一张很有用的图,你知道∠BOC=∠1+∠2+∠3的奥秘吗?请用你学过的知识予以证明.(可自主添加必要的辅助线)
②如图2,设x=∠A+∠B+∠C+∠D+∠E.运用①的结论填空:
x=180°; x=180°; x=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)数学爱好者小森偶然阅读到这样一道竞赛题:
一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5,5,求六边形ABCDEF的面积.
小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于$\frac{47\sqrt{3}}{4}$.

(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.
请你仿照小森的思考方式,求出这个八边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知在平面直角坐标系中,A(a、o)、B(o、b)满足$\sqrt{a-b}$+|a-3$\sqrt{2}$|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.
(1)求a、b的值.
(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.
(3)若∠OPD=45°,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:
(1)大约几时的光合作用最强?
(2)大约几时的光合作用最弱?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.有下列四个命题:①3是9的一个平方根②实数和数轴上的点是一一对应的.③在同一平面内,两条直线的位置关系有两种:相交和平行;④$\root{3}{7}$的整数部分是2,小数部分是2-$\root{3}{7}$.其中假命题有(填序号)①②③.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=$\frac{4}{7}$,AD=$\sqrt{65}$,CD=13,则线段AC的长为4$\sqrt{13}$.

查看答案和解析>>

同步练习册答案