精英家教网 > 初中数学 > 题目详情
5.如图,D是BC的中点,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.求证:AD=EC.

分析 首先证明四边形ABDE是平行四边形,可得AE=BD,再根据DC=DB可得AE=DC,进而证出四边形ADCE是平行四边形,可得AD=EC;

解答 证明:∵AE∥BC,DE∥AB,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵D是BC中点,
∴DC=DB,
∴AE=DC,AE∥DC,
∴四边形ADCE是平行四边形,
∴AD=EC;

点评 本题考查了平行四边形的判定的知识,解题的关键是能够判定四边形为平行四边形,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.在△ABC中,∠C=90°,若a:b=3:4,且c=30,则b=24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a、b、c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a、b、c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).1cm表示1个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知AB∥CD,AD是∠CAB的平分线且交CD于点D.
(1)若∠ACD=140°,求∠DAB的度数;
(2)若CE⊥AD,垂足为E,求证:AE=ED.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为(  )
A.$\frac{1}{2}$cmB.1cmC.$\frac{3}{2}$cmD.2cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.问题1:
填表:计算代数式的值.
 a-$\frac{5}{2}$-2-1 0 1 2
 a2-2a+1 12.259310 1
问题2:
你可以再换几个数再试试(不需要写出来),先观察表格再归纳,你发现a2-2a+1的值有什么规律?把它写出来,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在四边形ABCD中,∠DAB=∠BCD=90°,点E是BD上任意一点,点O是AC的中点,AF∥EC交EO的延长线于点 F,连接AE,CF.
(I)判断四边形AECF是什么四边形,并证明;
(2)若点E是BD的中点,四边形AECF又是什么四边形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在正方形ABCD中,E、F分别为AB、BC的中点,连结CE交DB、DF于G、H,则EG:GH:HC=5:4:6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算
(1)13.7×$\frac{17}{31}$+19.8×$\frac{17}{31}$-2.5×$\frac{17}{31}$
(2)(3x+y-2)(3x-y+2)
(3)8502-1700×848+8482

查看答案和解析>>

同步练习册答案