分析 (1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°-α,从而可知BD=BE;
(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=$\sqrt{5}$,所以tanα=$\frac{1}{2}$,从而可求出AB=$\frac{BF}{sinα}$=2$\sqrt{5}$,利用勾股定理列出方程即可求出x的值.
解答 解:(1)设∠BAD=α,
∵AD平分∠BAC
∴∠CAD=∠BAD=α,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ABC=90°-2α,
∵BD是⊙O的切线,
∴BD⊥AB,
∴∠DBE=2α,
∠BED=∠BAD+∠ABC=90°-α,
∴∠D=180°-∠DBE-∠BED=90°-α,
∴∠D=∠BED,
∴BD=BE
(2)设AD交⊙O于点F,CE=x,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∵BD=BE,DE=2,
∴FE=FD=1,
∵BD=$\sqrt{5}$,
∴tanα=$\frac{1}{2}$,
∴AC=2x
∴AB=$\frac{BF}{sinα}$=2$\sqrt{5}$
在Rt△ABC中,
由勾股定理可知:(2x)2+(x+$\sqrt{5}$)2=(2$\sqrt{5}$)2,
∴解得:x=-$\sqrt{5}$或x=$\frac{3\sqrt{5}}{5}$,
∴CE=$\frac{3\sqrt{5}}{5}$;
点评 本题考查圆的综合问题,涉及切线的性质,圆周角定理,勾股定理,解方程等知识,综合程度较高,属于中等题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{x}^{2}+{y}^{2}}{{x}^{2}-{y}^{2}}$ | C. | $\frac{x-y}{x+y}$ | D. | x2+y2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com