【题目】如图1,已知□ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是□ABCD边上的一个动点.
(1)若点P在边BC上,PD=CD,求点P的坐标.
(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.
(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)
【答案】(1)点P坐标为(3,4);(2)点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4);(3)点P坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4).
【解析】试题分析:(1)点P在BC上,要使PD=CD,只有P与C重合;
(2)首先要分点P在边AB,AD上时讨论,根据“点P关于坐标轴对称的点Q”,即还要细分“点P关于x轴的对称点Q和点P关于y轴的对称点Q”讨论,根据关于x轴、y轴对称点的特征(关于x轴对称时,点的横坐标不变,纵坐标变成相反数;关于y轴对称时,相反;)将得到的点Q的坐标代入直线y=x-1,即可解答;
(3)在不同边上,根据图象,点M翻折后,点M’落在x轴还是y轴,可运用相似求解.
试题解析:(1)∵CD=6,∴点P与点C重合,∴点P的坐标是(3,4).
(2)①当点P在边AD上时,由已知得,直线AD的函数表达式为:,设P(a,-2a-2),且-3≤a≤1.
若点P关于x轴对称点Q1(a,2a+2)在直线y=x-1上,∴2a+2=a-1,解得a=-3,此时P(-3,4).
若点P关于y轴对称点Q2(-a,-2a-2)在直线y=x-1上,∴-2a-2=-a-1,解得a=-1,此时P(-1,0).
②当点P在边AB上时,设P(a,-4),且1≤a≤7.
若点P关于x轴对称点Q3(a,4)在直线y=x-1上,∴4=a-1,解得a=5,此时P(5,-4).
若点P关于y轴对称点Q4(-a,-4)在直线y=x-1上,∴-4=-a-1,解得a=3,此时P(3,-4).
综上所述,点P的坐标为(-3,4)或(-1,0)或(5,-4)或(3,-4).
(3)因为直线AD为y=-2x-2,所以G(0,-2).
①如图,当点P在CD边上时,可设P(m,4),且-3≤m≤3,则可得M′P=PM=4+2=6,M′G=GM=|m|,易证得△OGM′∽△HM′P,则,即,则OM′=,在Rt△OGM′中,由勾股定理得,,解得m=-或,则P(-,4)或(,4);
②如下图,当点P在AD边上时,设P(m,-2m-2),则PM′=PM=|-2m|,GM′=MG=|m|,易证得△OGM′∽△HM′P,则,即,则OM′=,在Rt△OGM′中,由勾股定理得,,整理得m= -,则P(-,3);
如下图,当点P在AB边上时,设P(m,-4),此时M′在y轴上,则四边形PM′GM是正方形,所以GM=PM=4-2=2,则P(2,-4).
综上所述,点P的坐标为(2,-4)或(-,3)或(-,4)或(,4).
科目:初中数学 来源: 题型:
【题目】小明有两根长度分别为4cm和9cm的木棒,他想再取一根木棒,并充分利用这三根木棒钉一个三角形木框,则小明选取的第三根木棒长度可以是( )
A. 5cmB. 9cmC. 13cmD. 17cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解同学们课外阅读的情况,现对初三某班进行了“我最喜欢的课外书籍类别”的问卷调查,用“A”,表示小说类书籍,“B”表示文学类书籍,“C”表示传记类书籍,“D”表示艺术类书籍.根据问卷调查统计资料绘制了如下两幅不完整的统计图
请根据统计图提供的信息解答以下问题:
(1)本次问卷调查,共调查了 名学生.
(2)请补全条形统计图;扇形统计图中表示“B”的扇形圆心角为 度.
(3)该班有40人,请通过计算估计这个班喜欢传记类书籍的大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况、针对这个问题,下面说法正确的是( )
A. 300名学生是总体B. 每名学生是个体
C. 50名学生的视力情况是所抽取的一个样本D. 这个样本容量是300
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且tan∠ABC=.
(1)求抛物线的解折式.
(2)在直线BC下方抛物线上一点P,当四边形OCPB的面积取得最大值时,求此时点P的坐标.
(3)在y轴的左侧抛物线上有一点M,满足∠MBA=∠ABC,若点N是直线BC上一点,当△MNB为等腰三角形时,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=k1x+6与反比例函数y2=相交于A、B,与x轴交于点C,过点B作BD⊥x轴于点D,已知sin∠DBC=,OC:CD=3:1.
(1)求y1和y2的解析式;
(2)连接OA,OB,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com